MathWorks AUTOMOTIVE CONFERENCE 2023 Korea

The development status of HMC vehicle dynamics model using MATLAB/Simulink

Lee, Jinhwa, Hyundai Motor Group

Contents

- Introduction
- The Model and its understanding
- Environment of Model Development
- Model V&V Process
- Summary

Introduction

Vehicle model development and distribution

for System/SW verification/validation(V&V)/performance development

Reduced Order Model based on CAE Model and Test Measurement

① Planar Models using MATLAB/Simulink

분류		Full vehicle	피치 모델	롤 모델	횡+요+롤	Bicycle	Quarter car	Steering
		C C C C C C C C C C C C C C C C C C C						
차량 거동	횡방향	•		•	•	•		•
	수직방향	•	•	•	•		•	
	스티어링							•
	종방향	•						
운동 자유도 (d.o.f)	Sprung	6	2	2	3	2	1	2
	Unsprung	4	2	2	_	-	1	-
	Wheel	4	_	_	_	_	_	_
	Steering	_	_	_	_	-	-	2
	Total	14	4	4	3	2	2	4

For example, 14DOF vehicle dynamics model + MF-SWIFT using Simscape Vehicle Body(6DOF) + Wheel vertical (4DOF) + Wheel spin (4DOF)

MATLAB

SIMULINK

ASM

dSPACE

The Model and Its Understanding

2 Lumped Parametric Model

A vehicle model that configures the Kinematic/Compliance characteristics of a suspension system in the form of a function through wheel relative motion (displacement, speed, acceleration) equation for a vehicle body based on 17 DOF model

Vehicle Body 6DOF + (Wheel Vertical 1DOF + Wheel Rotation 1DOF) x 4 = 14 DOF

Steering system 3DOF

Kinematic/Compliance Modeling from MBD simulations

2 Translations + 3 rotations : 5 variables need to be defined Polynomial / Lookup table (wheelbase, tread, toe, camber, caster by wheel stroke/rack stroke)

$$C = \frac{\partial q}{\partial Q} = \begin{cases} 2.70E-06 - 3.46E-11 - 1.69E-10 - 5.30E-06 - 1.19E-09 - 4.15E-10 - 2.03E-07 - 2.80E-07 - 1.25E-09 - 1.03E-06 - 4.37E-11 - 1.18E-07 - 7.20E-08 - 1.13E-10 - 3.75E-07 - 2.02E-07 - 6.15E-12 - 5.91E-12 - 2.76E-07 - 1.75E-11 - 1.80E-10 - 7.20E-08 - 1.91E-10 - 3.75E-07 - 2.02E-07 - 9.01E-13 - 9.49E-11 - 7.73E-07 - 1.28E-09 - 5.30E-06 - 9.24E-11 - 1.87E-10 - 2.04E-05 - 3.11E-09 - 1.22E-09 - 3.98E-07 - 2.93E-07 - 1.27E-09 - 3.74E-06 - 1.13E-09 - 3.74E-07 - 1.13E-06 - 3.23E-09 - 8.41E-06 - 4.61E-07 - 1.09E-11 - 1.31E-09 - 4.14E-06 - 1.44E-08 - 4.14E-10 - 2.02E-07 - 3.10E-07 - 1.92E-11 - 4.25E-11 - 8.79E-08 - 2.09E-07 - 1.04E-10 - 3.25E-07 - 2.93E-07 - 2.03E-07 - 2.03E-07 - 1.04E-10 - 3.25E-07 - 2.95E-07 - 7.38E-12 - 9.16E-13 - 3.99E-07 - 1.92E-11 - 4.25E-11 - 8.79E-08 - 2.09E-07 - 1.04E-10 - 3.25E-07 - 2.97E-07 - 7.38E-12 - 9.64E-11 - 2.90E-07 - 1.30E-09 - 1.79E-10 - 2.09E-07 - 1.95E-06 - 1.91E-10 - 1.00E-06 - 1.22E-09 - 2.76E-07 - 7.75E-07 - 1.27E-09 - 4.15E-06 - 5.04E-06 - 8.29E-11 - 2.16E-10 - 1.89E-05 - 3.14E-09 - 1.03E-06 - 1.01E-11 - 1.30E-09 - 3.74E-06 - 1.43E-08 - 1.13E-09 - 3.24E-07 - 9.45E-07 - 9.25E-07 - 3.25E-09 - 4.77E-06 - 1.04E-10 - 3.25E-07 - 1.02E-07 - 1.02E-07 - 1.32E-09 - 3.74E-06 - 1.43E-08 - 1.13E-09 - 3.24E-07 - 9.25E-07 - 3.25E-09 - 1.02E-07 - 1.32E-09 - 3.74E-06 - 1.43E-08 - 1.13E-09 - 3.24E-07 - 9.25E-07 - 3.25E-09 - 4.77E-06 - 1.04E-06 - 1.01E-11 - 1.00E-06 - 1.02E-07 - 1.02E-07 - 1.32E-09 - 3.74E-06 - 1.43E-08 - 1.13E-09 - 3.24E-07 - 9.45E-07 - 9.32E-07 - 9.45E-07 - 9.25E-07 - 9.45E-07 - 9.25E-07 - 9.25E-09 - 4.77E-06 - 1.04E-10 - 1.00E-06 - 1.02E-06 - 1.01E-11 - 1.30E-09 - 3.74E-06 - 1.43E-08 - 1.13E-09 - 3.24E-07 - 9.32E-07 - 9.25E-09 - 4.77E-06 - 1.01E-11 - 2.0E-07 - 1.32E-09 - 3.24E-07 - 9.25E-07 - 3.25E-09 - 4.77E-06 - 1.01E-11 - 1.02E-08 - 1.43E-08 - 1.13E-09 - 3.24E-07 - 9.45E-07 - 3.25E-09 - 4.77E-06 - 1.01E-11 - 1.02E-08 - 1.01E-11 - 1.02E-08 - 1.13E-09 - 3.24E-07 - 9.24E-07 - 9$$

Compliance Matrices

8

The Model and Its Understanding

Simulink based Vehicle Dynamics Model by VDL (On-going) VDL((F) 旦 이 디 엘) from Kookmin Univ. Vehicle Dynamics Lab.

Development of a vehicle model suitable for SW Virtual Testing using Powertrain Blockset in Simulink and developed vehicle dynamics model for around 10 years with HMC

Vehicle Dynamics Model w/o Powertrain system

Simulink based Vehicle Dynamics Model

This is why...

- MBD method is strongly required by SDV (Software Defined Vehicle) development strategy
- The Capabilities for integration and simulation of various controllers and development platform

Benefits

- Integration of various controllers using Native Simulink and Legacy Code and FMI
- Open environment that can be used as a common development tool for model readability and collaboration
- Applicable to optimization and controller development in connection with useful MATLAB/Simulink Toolbox
- Continuous use from MIL to HIL level through code generation support

Tire Modeling, generally..

Test based method : HMC, Tire Suppliers

FEM Based (just started..) : Tire Suppliers Test based

FEM Based

Tire Modeling, In case we cannot acquire tire model from previous method.. We are using design specifications/performance based tire modeling method using MATLAB Optimization Toolbox / Python(GPR ML)

MathWorks AUTOMOTIVE CONFERENCE 2023

How to create prediction model for FTC (Functional Tire Characteristics)

Tire Design Variables(26)/Simulation Conditions

0.1

Sensitivity Analysis to select effective tire design parameters

Machine learning algorithm selection using MAPE as evaluation index

Candidates

- **Ridge Regression**
- Least-Angle Regression 2.
- Support Vector Regression 3.
- K-nearest Neighbors Regression 4.
- **Gaussian Process Regression** 5

Model V&V Process

VERIFICATION	유효성 검토 (Physical Plausible Check)				
	Is the model properly configured according to the vehicle specifications/design specifications? Is it normally simulated in straight/brake/drive/steering/reverse/stop conditions?				
÷					
MODEL CHECK	시스템 모델 적합성 검토 (System Model Feasibility)				
	 · 공력 (Aero) - Drag, Lift, Side 공기 저항력 · 파워트레인 (PT) - 엔진 토크, 터보 차저, 변속 패턴(Shift/Lock up) · 제동 (Brake) - 페달 위치, 제동 토크, 제동 압력, 마스터 실린터 압력 · 타이어 (Tire) - 타이어 F&M (Fx, Fy, Mx, My, Mz) · 현가 힘요소 (Susp. Force) - 외력(Fspirng, Fdamp, Fstab, Fbps/rbs) · 현가 K&C (Susp. K&C) - Toe, Camber, Caster, Wheelbase, Tread 변화량 				
VALIDATION	1. 해석 vs 계측간 정합성 검토 (VP Quality)				
Maneuver list Behavioral Characteristics Result	 Transient, Steady sate, Acc/Braking, Coastdown (13 maneuvers) ISO4138, ISO22140/7401, ISO19364, ISO 19365 				
	2. 해석 vs 해석(MBD) 정합성 검토 (VP Quality)				
Not tested	Longitudinal / Lateral Behavior				

Model V&V Process

$$\begin{split} &X_T = X - \Delta Y \; \epsilon_X{}^2 \; / \; D \qquad X_B = X + \Delta Y \; \epsilon_X{}^2 \; / \; D \\ &Y_T = Y + \Delta X \; \epsilon_Y{}^2 \; / \; D \qquad Y_B = Y - \Delta X \; \epsilon_Y{}^2 \; / \; D \end{split}$$

Table 1 — Offsets and gains used to define tolerances ϵ_X and ϵ_Y for constant-radius tests

Variable on Y-axis	X offset (m/s ²)	X gain	Y offset (deg)	Y gain
Steering wheel angle (deg)	0,1	0,06	1,0	0,03
Sideslip angle (deg)	0,1	0,06	0,3	0,04
Roll angle (deg)	0,1	0,06	0,2	0,2

Summary

- The demand for vehicle/system model for SW virtual verification/validation(V&V) and calibration is significantly/remarkably increased for SW development efficiency.
- MATLAB/Simulink is widely used in HMC vehicle dynamics modeling process thanks to useful and powerful toolbox and MATLAB/Simulink is very open/efficient tool to connect the different models and to operate different tool chain.
- Hyundai is on the way to develop Simulink based vehicle dynamics model including PT/PE systems in Powertrain Blockset to easily integrate control models.
- Current vehicle model quality (fidelity of system model) and qualification process need to be improved for SW virtual calibration at high long./lat. acc range. But vehicle models are widely used across many application areas for function validating, fail safe, fault diagnosis, regulation certification, virtual calibration (at low~mid acc range)
- Objective model validation index is under investigation and its criteria will be quantified in order for consistency of model quality especially for SW virtual calibration in terms of vehicle behaviors

MathWorks AUTOMOTIVE CONFERENCE 2023 Korea

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.