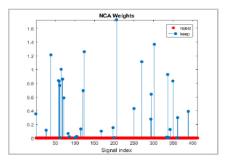


QUICK START GUIDE

Machine Learning with MATLAB


Naming Convention fit + c(lassification) / r(egression) + model e.g., for SVM classifier m = fitcsvm(X,Y)		
Decision tree	c,r	tree
Linear model	c,r	linear
Support vectors	c,r	svm
Gaussian kernel	c,r	kernel
Ensembles (incl. random forest)	c,r	ensem- ble
K-nearest neighbor	С	knn
Discrim. analysis	С	discr
Naïve Bayes	С	nb
Gaussian process	r	gp
(Gen.) Linear regression		(g)lm
Nonlin. regression		nlm

Feature Selection

Neighborhood Component Analysis

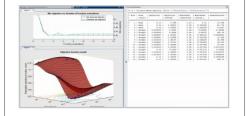
Automate identifying the features with predictive power.

fscnca(X labels, 'Lambda',...);
find(mdl.FeatureWeights > 0.01)

Also available: PCA Sparse filtering Matrix factorization Stepwise regression Reconstruction ICA t-SNE

Hyperparameter Tuning

Explore and change parameters in app:



Automated Bayesian Optimization

Leverage Bayesian model to decide which points in the hyperparameter space to try next. Much faster than grid search.

mdl = fit...(X, labels,

'OptimizeHyperparameters', 'auto');

Deploy

Standalone, Web Apps, Spark

Share as standalone, MapReduce, and Apache Spark™ applications; web apps; and Microsoft® Excel® add-ins.

Integrate with Enterprise IT/OT

Convert into C/C++, Java®, .NET, or Python® library using MATLAB Compiler SDK™.

C-Code Generation

Automatically convert to C/C++ code for embedded deployment using MATLAB $\mathsf{Coder}^\mathsf{TM}$

- Train model Mdl = fitcsvm(X,Y);
- 2. saveCompactModel(Mdl,'mySVM');
- 3. Define entry-point function

function label = predictSVM(x)
 m = loadCompactModel('mySVM');
 label = predict(m,x);

end

4. Generate C code

codegen predictSVM -args {X}

Learn more: mathworks.com/machine-learning

mathworks.com