
Measuring the Return on Investment
of Model-Based Design
As cyber-physical systems become more complex, it is becoming more difficult to maintain quality and control
costs with traditional approaches to system development. To meet this challenge and improve their competitive
position, companies are adopting Model-Based Design for systems and software development. However, the bene-
fits of adopting Model-Based Design along with the supporting processes to fully leverage its benefits need to be
justified before the investment can be made. The Model-Based Design return on investment (ROI) framework
described in this paper provides an analytical tool to justify investment in Model-Based Design by quantifying the
expected savings of Model-Based Design over a traditional development approach.

WHITE PAPER

 2

Introduction
As customer requirements increase in scope and complexity, the logic and control software for sys-
tems has also grown in scope and complexity. As organizations develop the millions of lines of code
required for airplanes and automobiles under ever tightening schedules, they find that traditional
development processes are not sufficient to meet quality and schedule targets. Model-Based Design
for system development lowers costs by identifying defects early in the development process and
reducing the total number of latent defects. By helping companies deliver higher-quality industrial
machinery, robotics, wireless systems, and other complex systems at lower cost and in less time,
Model-Based Design provides a competitive advantage.

Traditional Development Process vs. Model-Based Design
In a traditional development process, tasks at each stage are performed sequentially in different tool
environments, with many manual steps that introduce pain points (Figure 1). In each stage of devel-
opment, from defining system requirements to the operations of a system, inefficiencies are intro-
duced when a Model-Based Design approach is not adopted.

System requirements are captured textually, using tools such as Microsoft® Word® or IBM®
Engineering Requirements Management Doors®, while system architectures are specified in drawing
tools, making them difficult to analyze, interpret, and manage as changes are made. Subsystem
designs are created using domain-specific tools, which precludes system-level testing until after
implementation in software or hardware. The designs are then manually translated into code, which
is a time-consuming and defect-prone process. At each phase, some defects are introduced, leaving
the test phase to be the catch-all for all the defects that have accumulated throughout the previous
phases. Lack of a common tool environment, multiple manual steps, and late-stage defect discovery
all drive up development time and cost. Operational data and the resulting insights are not effectively
utilized either, forgoing valuable improvements to system efficiency and up-time while the system is
in operation.

Figure 1. The traditional software development process. This approach requires many unnecessary
manual steps that can introduce defects.

REQUIREMENT
DOCS

Difficult to manage as
they change

Difficult to analyze

PAPER SPECS

Slow to revise when
requirements change

Difficult to integrate
with design

Easy to misinterpret

PHYSICAL
PROTOTYPES

Prevents rapid iteration

Expensive and time-
consuming to build

Incomplete behavior

MANUAL CODING

Difficult to reuse

Introduces defects
and variance

Time consuming

TRADITIONAL
TESTING

Traceability

Design and integration
issues found late

SYSTEMS IN
OPERATION

Difficult to get value from
operational data

Hard to feed insights back
to developers

Improving uptime

No system-level testing

Operations and
Sustainment

System
Requirements

System
Functionality and

 Architecture

Subsystem
Design

Subsystem
Implementation

System
Integration

and Test

 3

Model-Based Design (Figure 2) makes systematic use of models throughout the development process.
It starts with the same set of system requirements as a traditional process. Rather than serving as a
basis for textual specifications, however, the requirements are used to develop a system architecture
that is an executable specification in the form of behavior and architecture models. Engineers use
these architecture models to clarify requirements and specifications. The models are then used as a
basis to develop a detailed subsystem design.

Figure 2. Software development process using Model-Based Design. This approach uses a system-level
model as an executable specification throughout development and supports system- and component-

level design and simulation, automatic code generation, and continuous test and verification.

Using MATLAB® and Simulink® for Model-Based Design, engineers can simulate the design at the
system level, uncovering interface defects before implementation. Once the design is finalized, the
engineers automatically generate production-quality code and test cases from the models, eliminating
errors caused by hand-writing code. This workflow enables engineers to stay in the same environ-
ment from system requirements definition to system testing, minimizing the amount of manual
work. In addition, testing can begin at the requirement phase, when engineers simulate their execut-
able specifications in models to verify that the requirements are met. As a result, defects are caught
and removed earlier, lowering the total cost of development.

Savings from a Systems Engineering Perspective
The systematic use of models in model-based systems engineering can produce up to 55% overall
savings after two years, according to research conducted by Jerry Krasner for Embedded Market
Forecasters [1]. The use of models reduces dependency on text requirements that are often over-
specified due to past miscommunications. With Model-Based Design, models serve as a common
language throughout the development process. This approach reduces ambiguity in product

Operations and
Sustainment

System
Requirements

System
Functionality and

 Architecture

Subsystem
Design

Subsystem
Implementation

System
Integration

and Test

Use cases

Requirement docs
and models

Behavior models

Architecture models

Physics-based

Data-driven

C, C++

VHDL, Verilog

GPU code

Structured text

Model-based
verification and

validation

Code-based
verification and

validation

Certification
workflows

Digital twins

Predictive
maintenance

Unambiguous - easy to understand

Systems engineering - modeling
whole system including environment

Early validation and test development

EXECUTABLE SPECIFICATION
Eliminate errors from hand-coding

Regenerate easily for different targets

AUTOMATIC CODE GENERATION

Detect errors early in development

Reduce use of physical prototypes

Reuse tests throughout development process

CONTINUOUS TEST
AND VERIFICATION

 4

specifications and enables the use of simulations to validate requirements. The use of models to simu-
late and refine product specifications before building the product is a key reason for savings.

Model-Based Design also enables the exploration of multiple solutions when developing system
requirements and architectures, enabling faster design iterations and consensus building early in the
design process. With a model-based approach, a single tool chain is used from the systems engineer-
ing phase through the development and operation phases of a project, enabling system architectures
to be connected to system designs seamlessly and efficiently.

Savings from a Development Perspective
Organizations that adopt Model-Based Design realize savings ranging from 20 to 60%, when com-
pared with traditional methods [2, 3]. The bulk of these savings come from better requirements anal-
ysis combined with early and continuous testing and verification. As requirements and designs are
simulated using models, defects are uncovered much earlier in the development process, when they
are orders of magnitude less costly to fix (Figure 3).

Figure 3. Defects found by development phase. Model-Based Design
shifts defect discovery earlier in the process .

Quantifying Savings Using the Model-Based Design ROI Framework
The Model-Based Design ROI framework is designed to estimate the ROI from adopting Model-Based
Design on specific projects. Based on project size, team size, and other factors, the framework calcu-
lates a cost for traditional development using the basic Constructive Cost Model (COCOMO) model,
and then subtracts the savings from Model-Based Design to obtain the Model-Based Design cost of
development. (The basic COCOMO model was chosen for the framework because it is a general para-
metric cost estimation tool widely used in the aerospace and defense industry, in which procurement
cost accountability demands rigorous models for software cost estimation.)

 5

ROI is then calculated by accounting for the savings that can result from using Model-Based Design
for development. This calculation uses metrics from the Software Engineering Institute (SEI),
Institute of Electrical and Electronics Engineers (IEEE), and industry studies [1, 4, 5, 6]. Because proj-
ect scope, existing processes, and team expertise using Model-Based Design vary across industries
and companies, the Model-Based Design ROI framework can be customized for specific projects and
teams.

Consider a baseline case of a software project with 50,000 lines of code. Using the basic COCOMO
model, the cost of development using traditional methods would be approximately $6 million (USD).
To calculate the savings of Model-Based Design over traditional methods, each development phase—
requirements, design, implementation, and test—is analyzed based on industry metrics. The savings
are then summarized and subtracted from the traditional cost of development. In this case, the
Model-Based Design cost is $3 million (USD), a 50% savings compared with the traditional method.

To arrive at the 50% savings, the framework examines inefficiencies in the traditional development
process that Model-Based Design eliminates, and calculates the savings based on empirical data from
customers, customer interviews, industry metrics, and averages. Savings for each development phase
are calculated separately, so that the framework is adaptable for step-by-step adoption of Model-Based
Design.

Savings During Requirements Development

To give a sense of how the framework works, let’s look at an inefficiency in the requirements phase.
Using models to uncover vague, inconsistent, or un-testable requirements enables engineers to uncov-
er a higher percentage of defects. The baseline case assumes 15% of requirements contain defects or
need reworking, which is an estimate obtained from industry interviews. Uncovering these defects at
the requirements phase means avoiding costly rework later in the development phase. Part of the
requirement savings is arrived at by multiplying the number of defective requirements by the average
length of time to resolve defective requirements that are detected after the requirements phase. In the
baseline case, the average number of hours per requirement defect is 4.5 hours [6]. By this calculation,
Model-Based Design saves 3,375 engineering hours. Table 1 demonstrates a section of the framework
that deals with the requirement analysis pain point.

Table 1. ROI framework calculation of the number of engineering hours saved
by fixing incorrect requirements early.

Requirements Development and Traceability

Percentage of requirements needing rework 15%

Number of incorrect requirements 750

Hours to rework each requirement 4.5

Hours saved to fix incorrect requirements post–requirement phase 3,375

 6

Savings During Testing

Inefficiencies in the testing phase are also captured in this framework and result in the bulk of the
savings. With Model Based-Design, tests can be generated automatically to verify and validate
models, and obtain full test coverage. This approach saves valuable time that would be otherwise
spent addressing missing test coverage late in the development process. These test cases can be used
through several stages of testing, from desktop simulation to hardware-in-the-loop testing. Reports
that summarize test results and comply with industry standards can also be automatically generated.
Assuming a project with 5,000 requirements, using Model-Based Design can result in up to 12,000
hours being saved due to comprehensive test case generation during the modeling phase, and the abil-
ity to reuse test cases in multiple testing environments. Figure 5 demonstrates the section of the
framework that deals with testing pain points.

Table 2. ROI Framework calculation of the number of engineering hours saved in the testing and
reporting workflow by using Model-Based Design.

Overall Development Savings

The framework contains several additional sections that deal with different inefficiencies at each stage
of the development process. Summarizing the savings from the entire development process, almost
half of the savings in this example came from the test phase (Figure 4). This is due to more thorough
requirements analysis early in the development process, which results in fewer defects being carried
through to the testing phase, when requirements and tests become costly to revise and improve. Put
simply, better requirements lead to better designs. Early and continuous testing results in more defects
being identified and addressed in the same phase that they are introduced, which leaves fewer latent
defects in the software and lowers overall development costs.

Testing and Reporting

Hours spent per requirement to address missing test coverage 2

Automatic test generation savings factor 70%

Hours saved addressing missing coverage 7,000

Hours spent validating/debugging tests in lab per requirement 2

Test reuse factor (from desktop testing to lab) 50%

Hours saved in lab testing (test reuse) 5,000

 7

Figure 4. Percentage of total savings by development phase.
Savings in the testing phase accounted for most of the total savings.

When companies who are adopting Model-Based Design collaborate with MathWorks, the ROI
framework helps guide the adoption process, enabling them to identify areas that will benefit imme-
diately and significantly from transitioning to Model-Based Design.

Savings Beyond the Development Lifecycle

While the ROI framework quantifies the cost savings through the development lifecycle, these savings
are not the only financial benefit of adopting Model-Based Design. The faster development pace
accelerates the time to market, giving customers who use Model-Based Design a competitive edge. In
addition, the reduced overhead and miscommunication enabled by Model-Based Design frees up
resources for core business activities and innovation.

Summary
For most companies, investing in new technology and processes is a risky endeavor. The return on
investment calculation described in this paper aims to provide analytical evidence to support an
investment in Model-Based Design. In addition to justifying the investment, the ROI framework
enables teams to identify areas in which Model-Based Design provides the most savings, as well as
areas in which further investigation could lead to substantial additional cost reductions.

To get a customized ROI calculation for your team or organization, contact Sales.

Learn More
• Why Adopt Model-Based Design?

• How Engineering Teams Adopt Model-Based Design

• Simulink for Simulation and Model-Based Design

• Model-Based Design Process Assessment and Maturity Framework

https://www.mathworks.com/company/aboutus/contact_us/contact_sales.html
https://www.mathworks.com/content/dam/mathworks/white-paper/why-adopt-model-based-design-white-paper.pdf
https://www.mathworks.com/content/dam/mathworks/white-paper/how-engineering-teams-adopt-model-based-design.pdf
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/services/consulting/proven-solutions/mbd.html

 8

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

9/21

References
1. Krasner, Jerry. How Product Development Organizations Can Achieve Long-Term Cost

Savings Using Model-Based Systems Engineering (MBSE). October 2015. https://www.omgwi-
ki.org/MBSE/lib/exe/fetch.php?media=mbse:how_product_development_organizations_can_
achieve_long-term_savings_1_.pdf

2. MathWorks, OHB Develops Satellite Guidance, Navigation, and Control Software for
Autonomous Formation Flying. https://www.mathworks.com/company/user_stories/ohb-de-
velops-satellite-guidance-navigation-and-control-software-for-autonomous-formation-fly-
ing.html

3. MathWorks, BAE Systems Achieves 80% Reduction in Software-Defined Radio Development
Time. https://www.mathworks.com/company/user_stories/bae-systems-achieves-80-reduc-
tion-in-software-defined-radio-development-time.html

4. Over, James W., Managing Software Quality with the Team Software Process, Software
Engineering Institute. http://c-spin.net/2010/c-spin201004Managing%20Software%20
Quality%20with%20the%20Team%20Software%20Process.pdf

5. Vallespir, Diego, and William Nichols. Analysis of Code (and Design) Defect Injection and
Removal in PSP. CARNEGIE-MELLON UNIV PITTSBURGH PA, 2012. https://resources.sei.
cmu.edu/asset_files/Presentation/2012_017_001_298088.pdf

6. Tom King, Joe Marasco, What Is the Cost of a Requirement Error? StickyMinds. http://www.
stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetail&ObjectType=ARTCOL

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:how_product_development_organizations_can_achieve_long-term_savings_1_.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:how_product_development_organizations_can_achieve_long-term_savings_1_.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:how_product_development_organizations_can_achieve_long-term_savings_1_.pdf
https://www.mathworks.com/company/user_stories/ohb-develops-satellite-guidance-navigation-and-control-software-for-autonomous-formation-flying.html
https://www.mathworks.com/company/user_stories/ohb-develops-satellite-guidance-navigation-and-control-software-for-autonomous-formation-flying.html
https://www.mathworks.com/company/user_stories/ohb-develops-satellite-guidance-navigation-and-control-software-for-autonomous-formation-flying.html
https://www.mathworks.com/company/user_stories/bae-systems-achieves-80-reduction-in-software-defined-radio-development-time.html
https://www.mathworks.com/company/user_stories/bae-systems-achieves-80-reduction-in-software-defined-radio-development-time.html
http://c-spin.net/2010/c-spin201004Managing%20Software%20Quality%20with%20the%20Team%20Software%20Process.pdf
http://c-spin.net/2010/c-spin201004Managing%20Software%20Quality%20with%20the%20Team%20Software%20Process.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2012_017_001_298088.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2012_017_001_298088.pdf
http://www.stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetail&ObjectType=ARTCOL
http://www.stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetail&ObjectType=ARTCOL

