
2008-01-1052

Testing Human Machine Interface (HMI) Rich Designs using
Model-Based Design

Chris Fillyaw, Jonathan Friedman, and Sameer M. Prabhu
The MathWorks, Inc.

Copyright © 2008 The MathWorks, Inc.

ABSTRACT

Today’s vehicles are typically outfitted with passenger
convenience features that require Human Machine
Interfaces (HMIs). HMIs can be relatively simple – such
as a remote key fob – or more sophisticated – such as a
radio face plate. Traditional development of HMIs
involves two typically independent processes – (1)
Physical Component Design and (2) Functional Logic
Design. The physical component design is developed
by a team that usually includes both graphics and
ergonomics designers to ensure that the HMI is intuitive
and fits well with the interior styling of the vehicle. The
functional logic design follows a more typical software
development process. This process is based on
functional requirements commonly written in terms of
user requests and system responses as represented by
the HMI. As the complexity of the system increases, it is
essential for the intuitiveness and ease of use of the HMI
to advance as well. For teams using traditional methods
to design, prototype, and fully test an HMI, achieving this
level of ease of use is becoming increasingly
challenging. In an earlier paper, the authors
demonstrated how to create a “soft” version of the HMI
under development and then use this to generate and
record test vectors [1]. These test vectors could then be
used to exercise the design under test to determine if
the HMI logic was completely tested and if the design
met the specified requirements. In this paper, the
authors will address two important workflow issues to
support the logic design and verification of HMIs – (1)
integration of the HMI graphics and HMI logic and (2)
formal verification of the HMI logic.

INTRODUCTION

It is estimated that electronics and software content will
make up 40% of a vehicle’s cost by the year 2010 [5]. In
the past, the electronic systems that replaced
conventional mechanical systems were used primarily to
ensure that vehicles met stringent emissions and fuel
economy requirements. Today, automotive
manufacturers are expanding the use of electronics to

introduce advanced multimedia and convenience
features to attract technology-savvy buyers. These
features assist the driver by providing relevant
information such as up-to-date traffic information to
change the planned route to a destination.
Technologies such as hands-free phone via the car’s
radio and wireless networking make these convenience
features possible. In addition to assisting the driver,
these systems can also entertain passengers through
on-board systems such as satellite radio, DVD players,
and so on, which can be accessed through a common
interface. Automotive manufacturers see such systems
as a key way to differentiate themselves from the
competition, and also as the basis of a lucrative revenue
stream. As a result, there is an increased emphasis on
developing and deploying these systems to meet
consumers’ varying requirements. At the same time, the
systems must be simple enough to operate and use
easily and they must meet high quality standards to
avoid costly recalls and software fixes.

Figure 1 - Virtual Radio Faceplate HMI

MODEL-BASED DESIGN FOR MULTIMEDIA AND
CONVENIENCE FEATURES

In an earlier paper the authors discuss the use of Model-
Based Design to address the challenges of increasing
product complexity, more stringent performance
requirements, and shorter product development cycles
[1]. The use of Model-Based Design to address these
challenges was demonstrated using the radio faceplate
as an example. The paper described the creation of a
“soft” version of the HMI under test to generate and
record test vectors. These test vectors could then be
used to exercise the design under test to determine if

the HMI logic was completely tested and if the design
met the specified requirements. The process outlined in
the paper was as follows:

1. Develop the “soft” HMI representation.
2. Capture the user inputs to the HMI and populate a

set of test vectors.
3. Exercise the model with the test vectors, capture the

system response and analyze whether the response
meets the design requirements.

4. Edit test vectors as needed based on requirements
specifications.

The previous paper built a foundation for improving the
process by which HMI rich systems are designed and
verified. With a realistic virtual HMI in place, the
engineer can connect it to a model of the logic and then
exercise the logic as the end user would. The physical
HMI design places many constraints on the functional
logic design. The ability to test the logic while developing
it can quickly highlight any deficiencies in the
requirements and design assumptions.

With a set of test vectors created during the design
process based on the requirements and design
assumptions, formal verification of the logic through
automatic test vector generation can reveal previously
unconsidered test scenarios. Formal verification can
also ensure that a complete test suite fully covering the
model can be developed, enabling the engineer to
exhaustively test the HMI rich system well before
hardware prototypes have been constructed. This paper
discusses the importance of using the virtual HMI to test
the system during development, connecting the virtual
HMI to the model, and using formal verification and
validation techniques to exhaustively test the system.

The paper includes:

� a detailed description of the benefits of exercising an
HMI rich design with a realistic virtual HMI and a
step-by-step process for connecting the virtual HMI
to a Simulink® model

� a discussion of formal verification and validation
techniques using automatic test vector generation
for analyzing model coverage

INTEGRATION OF HMI GRAPHICS AND
FUNCTIONAL HMI LOGIC

The HMI of the system is the sole interface through
which the user perceives and interacts with the state of
the system. As detailed in the earlier paper, a key
aspect of the multimedia and convenience features is
ease-of-use. Thus, a significant amount of time and
effort is devoted to designing the HMIs for these
systems in addition to designing the underlying
electronics.

The intuitiveness and ease-of-use of a system can only
be determined by users actually interacting with the

physical system or a representative virtual system. The
ability to interact with this logic as the customer would
allow system testing based on functional requirements.
When these requirements, which are often written in
terms of the customer interaction with the interface
device, can be tested as engineers are developing the
HMI logic, the team can asses the intuitiveness and
ease-of-use of the HMI while evaluating the
requirements early on in the development process.

Integrating the graphics with the logic supports design
exploration of the logic as well as both technical and
managerial reviews of logic design. The virtual HMI
developed in the previous paper as a means to create
test vectors can also be linked to the logic model using a
scripting language. To link the soft HMI to the logic,
each HMI element needs element-specific code in the
overall logic and graphic code.

Because the development of the virtual HMI was
covered in the previous paper, the details of constructing
the soft HMI will not be covered again here. This section
describes the connection of a virtual HMI of the radio
faceplate to the functional logic that was created in
Simulink. This connection enables the model to be
exercised and accessed during the simulation of the
functional logic and allows the user to perceive a
realistic representation of the physical system.

Figure 1 shows the virtual radio faceplate HMI that was
described in the earlier paper and created with GUIDE,
the MATLAB® graphical user interface (GUI)
development environment. This virtual HMI is a realistic
representation of the physical radio faceplate with all of
the buttons and indicators that customers would have
access to in their vehicle. The virtual HMI from the
earlier paper was modified to include an active LCD
display and to remove the record button, which is no
longer required when the HMI is connected to the
Simulink model.

The virtual HMI provides an interface to the functional
logic which has been modeled using both Simulink and
Stateflow®. Stateflow enables engineers to model the
state driven machines and discrete event reactions
needed in HMI rich designs. While a detailed discussion
of the underlying logic is beyond the scope of this paper,
a review of the top level model architecture will help to
illustrate how the HMI fits into the system.

Figure 2 - Radio faceplate model.

Figure 2 shows the top level Simulink model and the
components that make up the system. The model
contains two main components, a mode manager and a
message manager, both called by a scheduler. The
mode manager is the functional logic component and it
is executed at the base rate of the model. The message
manager is only executed when a user presses a button
on the virtual HMI. The model also includes input and
output interfaces used to receive button presses from
the virtual HMI and update the LCD display.

The button presses on the virtual HMI are captured and
translated into a message that is transmitted to the
message manager. In this design, which is similar to
how an actual radio might be architected, the message
manager receives the messages from the virtual HMI
input interface and translates them into commands that
are then sent to the mode manager. The mode
manager does not have a separate input for each button
press since it receives a message containing a payload
with the requested mode change.

Because the mode manager is modeled as it would be
implemented on real hardware that interacts using
communication buses, a button press is received by the
mode manager as a request and an 8-bit value instead
of a unique Boolean input. This messaging level of
abstraction makes it difficult to test the system without a
virtual HMI.

To link the soft HMI and the logic developed, each HMI
element will need additional element-specific code. To
better understand the process for connecting a button to
the model, consider the ON/OFF button as an example.

When the ignition key is in the ON or Accessory position,
the radio head unit is typically powered and is waiting for
a request from the user – for example, turning the radio
on or selecting a desired mode (such as AM, FM, or
CD). The functional logic behind the HMI accepts inputs
from the HMI, performs the decision-making logic to
handle the user request, and displays any change in

radio state. An example of the functional logic for the
ON/OFF button modeled using Stateflow is shown in
Figure 3.

Figure 3 - HMI functional logic modeled in
Stateflow®.

When the radio is first powered up, it enters the standby
state by default and waits for a user to press the
faceplate ON/OFF button before entering the ON state
with the appropriate audio mode. Using the virtual HMI,
the engineer can exercise the model just as the
requirement is written to ensure the design fulfills the
requirement.

The engineer can also watch the indicators on the virtual
HMI to determine if the radio has entered the ON state
and is in the desired mode. Figure 1 shows the virtual
HMI when the radio is in the Standby state and Figure 4
displays the virtual HMI when the radio head unit is in
the ON state with FM mode selected (as indicated by the
LCD display).

Figure 4 - Virtual HMI FM mode state.

This is an example of exercising the model through the
virtual HMI to test the logic and ensure that it is
functioning as expected and meeting the requirements.
In the event that the system does not respond properly
to the button presses as described by the requirements,
model animation capabilities enables the engineer to

investigate visually the reaction of the internal HMI logic
to the button presses. In Figure 5, the FM state is
highlighted in blue designating this as the active state
during simulation. Highlighting provides the engineer
with immediate feedback on the system’s response to
button presses.

Figure 5 - Stateflow® animation.

The virtual HMI enables engineers to evaluate ease-of-
use by analyzing end user interactions with the system.
Likewise, the ability to interact live with the system
model during simulation provides valuable insight during
development and throughout system verification and
validation.

In the previous paper, MATLAB GUI-building tools were
used to layout and generate the virtual HMI with a
number of pushbuttons allowing the engineer to
stimulate the model. For this paper, an LCD display was
added to display the state of the system because the
buttons now affect the functional logic model. Gauges
Blockset™ provides display components, including the
LCD display used in this example that can be accessed
from MATLAB GUIs.

The virtual HMI can be connected to the model using the
following process:

1. Identify the inputs and outputs of the system that the
virtual HMI will control and display.

2. Add a unique source block to the model to
correspond to each input controlled by the virtual
HMI.

3. Translate the virtual HMI button presses to the
source block values using MATLAB code.

4. For each display element of the HMI, create unique
sink blocks that accept model outputs to be
displayed using MATLAB code.

Each of these steps will be explained in detail within the
context of a radio head unit model.

IDENTIFYING INPUTS AND OUTPUTS

The radio faceplate virtual HMI contains 21 different
buttons that can be used as system inputs. This
example focuses on the ON/OFF button and describes
the steps needed to connect it to the Simulink model.
The same process can be applied to each of the 21
buttons.

Because the sole indicator on the radio faceplate is the
LCD display, only one output from the system is
required. In this paper, only the ON/OFF button will be
connected to the Simulink model. With the input and
output identified, step one of the process is complete.

ADD SOURCE BLOCKS

In Simulink all signals or inputs to a system must be
driven by a source. One method for connecting the
virtual HMI to the model is to add a Constant block for
each input signal to the model. By modifying the
automatically generated function callbacks in the
MATLAB GUI code, an engineer can change the value
of the Constant block programmatically when a button is
pressed. Figure 6 shows the Constant blocks added to
the front end of the Simulink model to drive the system
inputs. To allow the HMI to alter the value of a Constant
block, the Inline parameters on the Optimizations pane
of the Constant block’s Configuration Parameters dialog
must be unselected.

Figure 6 - Virtual HMI Constant blocks.

ADDING MATLAB CODE

With the Constant blocks in place, the MATLAB code to
change the value of the Constant block can be added to
the existing function callbacks automatically generated
by GUIDE. To link the ON/OFF button from the HMI to
the functional logic, add the following code to the
existing ON/OFF function callback:

% --- Executes on button press in power_pushbutton.

function power_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to power_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 power_current_state =
get_param('radio_control_function2/UserRequest/Inputs/HMI_Input_Driver/
ONOFF', 'Value');

set_param('radio_control_function2/UserRequest/Inputs/HMI_Input_Driver/O
NOFF', 'Value', num2str(~str2num(power_current_state)));

In this example, the code retrieves the current state of
the ON/OFF Constant block using the get_param()
function, and toggles the value using the set_param()
function.

The same technique can be used for each of the buttons
in the virtual HMI.

CONTROLLING THE VIRTUAL HMI LCD

With the inputs mapped to the Constant blocks in the
Simulink model, the model can be excited through the
use of the virtual HMI. During simulation, pressing the
buttons on the virtual HMI will cause the states to
execute the appropriate transition for each button press.
Technically, this is enough functionality to exercise the
model and perform interactive testing of the model while
visualizing state transitions in Stateflow charts. To fully
verify that the functional logic is transmitting the
appropriate output messages or toggling the appropriate
indicators, the output of the model should be connected
to the LCD display in the virtual HMI.

There are a number of methods to control the virtual
HMI LCD and display the various messages specified by
the functional requirements. The user interface displays
can all be accessed from the MATLAB workspace.
Using a handle to the virtual HMI that is provided when
the interface is instantiated, an engineer has complete
control over each of the display components of the user
interface. The model can be set up to automatically
open the appropriate virtual HMI when the model is
opened and attach a handle to the user interface for
controlling the LCD display component.

When the user interface is instantiated, a handle to the
user interface is provided as a return value. In the radio
faceplate example, the virtual HMI was created in
GUIDE and named “gen_faceplate”. GUIDE
automatically creates a MATLAB script with all the
callbacks. When executed, this script will instantiate the
user interface and return a handle to the user interface.
The following two MATLAB commands can be used to
instantiate the user interface and obtain its handle:

% Instantiate GUI and create a handle

h = gen_faceplate; % instantiate the user interface
hGUI = guihandles(h); % create a structure of user interface handles

Simulink can use these handles through MATLAB and,
as in this example, assign various sets of string data to
the LCD display. One way to do this is using a MATLAB

Function block in Simulink that calls a MATLAB function
from within Simulink for each time step during the
simulation.

The Simulink model uses a MATLAB set() function in the
MATLAB function block to control the text displayed on
the LCD display in the virtual HMI.

Figure 7 - MATLAB® function block controlling LCD
display.

Similar to how a message definition set may be
implemented in C code, a MATLAB cell array is created
that stores a set of messages to be displayed on the
LCD. Stateflow logic keeps track of which message to
display as an index value into this cell array. This cell
array is referenced in the MATLAB Function block, as
shown in Figure 7. The MATLAB code that defines the
message set is shown below.

% define message set
clear message_set;

message_set{1} = '';
message_set{2} = 'ON';
message_set{3} = 'NO DISC';
message_set{4} = 'DISC';
message_set{5} = 'PLAY';
message_set{6} = 'REWIND';
message_set{7} = 'FF';
message_set{8} = '101.1 FM';
message_set{9} = '1050 AM';

With the realistic virtual HMI implemented, the engineer
can interact with the system enabling rapid test case
generation to ensure the design meets the requirements
and the design intent. Similar to the test case logging
described in the previous paper, the engineer can use
the virtual HMI to interact with the model, storing the
sequence of button presses as signals using the Signal
Builder source block in Simulink for testing in the future.

The process in this case is somewhat simpler, because
the connection between the virtual VMI and the Simulink
model streamlines signal logging. Simulink provides an
easy method to log signals to the MATLAB workspace.
Once the signals are logged to the workspace, the
Signal Builder API, as described in the earlier paper, can

set(hGUI.activex1, 'AlphaNumeric',…
char(message_set{u}))

be used to populate Signal Builder with the test case to
be saved. Signal Builder blocks can then be used to
store the entire suite of test cases for running the
complete test suite against the model without interaction
from the user. Engineers can log the outputs and later
visualize and the compare the results.

FORMAL VERIFICATION OF THE HMI
FUNCTIONAL LOGIC

Once the HMI logic design is complete, test engineers
can create a set of reusable test vectors using the
process discussed in the previous paper and highlighted
above. However, given the combinatorial complexity of
the current set of automotive HMIs, it is nearly
impossible for test engineers to fully exercise all the
logic in the design.

For example, given a set of m buttons on a typical HMI
in which each button can lead to n different sub-menus
with a different set of functions for each button, and
where “no function” is also considered a function to be
verified, a test engineer would have to write mn tests. If a
combination of buttons enables other functionality, such
as diagnostics, then the set of tests becomes even more
complicated. Clearly, guaranteeing that the logic is fully
tested goes well beyond the functional testing specified
by the requirements and what can be feasibly
accomplished by manually pressing all of the button
combinations.

As an example, the requirement that “when the battery is
powered (key in Accessory or ON position), the audio
unit goes into the PowerOn mode,” also requires that all
of the buttons be active. Moreover, when the radio is in
PowerOff mode, the unwritten requirement is that all of
the buttons need to be inactive.

Using tools that take advantage of formal methods such
as Simulink® Design Verifier™ [9], engineers can
analyze the logic models to determine the inputs that will
result in full functional testing of the logic and identify
unreachable states (such as switch conditions that
cannot occur) [9].

Using software that implements formal methods,
engineers can generate tests for models to satisfy model
coverage and user-defined objectives. Engineers can
also prove model properties and generate examples of
violations.

For this paper, we are using Simulink Design Verifier,
which supports the following model coverage objectives:
decision, condition, and modified condition/decision
coverage (MC/DC). Additionally, one can define custom
test objectives directly using modeling constructs
available in the modeling packages, such as the design
verification blocks in Simulink and Stateflow. With
property proving, engineers can explore their design for
flaws, missed requirements, and unwanted states,
issues that are difficult to uncover by simulation.

The radio faceplate example has seven buttons that
have been made active in the virtual HMI, which makes
it a significant challenge to manually create the required
number of test cases to completely test the specification.
In addition, there are a number of test case possibilities
that are not covered by the requirements or may not
have been considered by the designer.

Requirements-based testing is a necessity and is an
effective first pass when developing test vectors, but
there are many button press sequences or internal
events that are not explicitly covered in the requirements
and that may cause undesirable behavior of the radio.
These conditions are the most difficult to test and can go
undetected until the radio has been placed in the vehicle
for testing on a bumpy road where it is common for the
driver to press buttons out of order. For example, when
inserting a CD, the user may accidentally press the fast-
forward (FF) button before the CD has been fully
inserted. A typical test engineer developing tests to the
requirements specification would insert the disc and wait
for it to start playing before pressing the FF button. In
the real world scenario, because the FF button was
pressed prior to the disc being fully inserted, the
behavior of the radio for this unexpected condition is not
known.

Formal methods can assist in finding these undesirable,
unintended conditions. Many of these scenarios go
untested when using manual test vector generation
techniques driven by the requirements simply because it
is very time consuming and difficult to think of these
abnormal button presses. Formal verification methods
and automatic test vector generation enable engineers
to analyze the system as an independent party that has
no preconceived notions of how the system is designed.
Formal verification techniques with automatic test vector
generation analyze the system and automatically
generate test vectors based on the possible decision
transitions contained in the system.

In the HMI model, the mode manager contains all of the
functional logic. As a result it makes sense to rigorously
test this component to achieve close to 100% model
coverage and determine if there are any unreachable
states within the model. In this example, the mode
manager is an atomic subsystem; by right clicking on the
subsystem block and execute Simulink Design Verifier,
engineers can automatically generate tests as shown in
Figure 8.

Figure 8 - Executing Simulink® Design Verifier™ on
a subsystem.

Once the portion of the system to be tested is selected,
the model will be analyzed and a list of test objectives is
created to achieve the model coverage objectives
selected by the engineer. In the radio faceplate case,
decision coverage is all that is required given the nature
of the functional logic in the mode manager subsystem
as shown in Figure 9.

Figure 9 - Simulink® Design Verifier™ test
objectives.

Each of the identified test objectives corresponds to
decision logic in the mode manager and will require a
test case that can satisfy the logic for both the TRUE
and FALSE case in order to be fully covered. Condition

coverage and MCDC are more complicated coverage
metrics, but they are not required in this example given
the logic in the model. Simulink Design Verifier will
attempt to generate a test case to satisfy each of the test
objectives if it is possible, meaning there are no
unreachable states or unachievable transitions.

Any states or transitions which are unreachable or are
not able to be tested given the definition of the standard
coverage metrics will be reported to the engineer. It is
not necessarily imperative to obtain 100% model
coverage, even though it should be the goal, it is more
important to be able to understand why there might be
cases where 100% model coverage is not achievable.
In these cases, the engineer will need to evaluate
whether there is a deficiency in the design requiring a
change or if the lack of coverage is expected.

For the radio head unit, 21 test cases were generated to
test all of the identified objectives. After generating the
test cases, a new test harness model is automatically
generated. The system under test is copied into this
model and connected to a Signal Builder block
containing each of the automatically generated test
cases. Figure 10 shows the automatically generated
test harness and Figure 11 shows the Signal Builder
block containing each of the automatically generated
test vectors.

Figure 10 - Automatically generated test harness.

Figure 11 - Automatically generated test vectors.

A common technique is to merge the test vectors that
were previously generated using the recorded virtual
HMI button presses with the automatically generated
test vectors. For this example, the two sets of test
vectors can be combined using the Signal Builder API in
Simulink. The MATLAB code to merge two signal
builder blocks is shown below.

function merge_sig_build(SigBuild1, SigBuild2)
%
% Merge the contents of two signal builder blocks
%
% SigBuild1 = destination signal builder block where the contents of
%
% SigBuild2 = additional test vectors to be merged with SignBuild1
%

%% Determine number of groups to be copied from the signal builder
% block
[sbTime,sbData, sbSigLabels, sbGroupLabels] =
signalbuilder(SigBuild1);
NumGroups = size(sbData,2);

signalbuilder(SigBuild2, 'append',sbTime, sbData, sbSigLabels,
sbGroupLabels);

With the test suite containing both the requirements
based test cases and the automatically generated test
cases, the engineers can be confident that they are
exhaustively testing their system and clearly understand
how it will perform prior to it being implemented on the
hardware. With the goal of achieving 100% model
coverage with the test suite, requirements based test
and formal methods achieved the full 100% decision
coverage as displayed in Figure 12.

Figure 12 - Radio head unit model coverage report.

CONCLUSION

Using both functional and formal verification techniques,
automotive engineers can develop their HMI designs
with confidence that random button presses will not
result in unintended functionality of the device from
untested logic. This paper demonstrates how engineers
can connect a virtual HMI to a Simulink model and
interactively test and asses the functionality of the HMI
logic. Considering the complexity of the functional logic
and the time needed to fully test an HMI rich design,
formal verification techniques can be applied to identify
unreachable states or transitions which cannot be
satisfied using the inputs to the system.

REFERENCES

1. Chris Fillyaw, Jonathan Friedman, Sameer M.
Prabhu, “Creating Human Machine Interface (HMI)
Based Tests within Model-Based Design”, SAE
Paper 2007-01-0780.

2. www.mathworks.com/applications/controldesign/des
cription

3. The MathWorks Inc., “Using MATLAB,” Version 7.5,
The MathWorks Inc., Natick, MA, September, 2007.

4. The MathWorks Inc., “Using Simulink,” Version 7.0,
The MathWorks Inc., Natick, MA, September, 2007.

5. Thomas Sedran, Thomas Wendt, and Antonio
Benecchi, “Electronics & Automotive: Achieving a
more solid Union,” Automotive Design & Production,
May 2005.

6. The MathWorks Inc., “Stateflow User’s Guide,"
Version 7.0, The MathWorks Inc., Natick, MA,
September, 2007.

7. The MathWorks Inc., “Creating Graphical User
Interfaces,” Version 7.5, The MathWorks Inc.,
Natick, MA, September, 2007.

8. The MathWorks, Inc., “Simulink Verification and
Validation User’s Guide,” Version 2.2,
The MathWorks, Inc., Natick, MA, September 2007.

9. The MathWorks, Inc., “Simulink Design Verifier
User’s Guide,” Version 1.1, The MathWorks, Inc.,
Natick, MA, September 2007.

CONTACT

Chris Fillyaw
Sr. Applications Engineer
(248) 596-7925, Chris.Fillyaw@mathworks.com.
Chris has been involved in developing automotive
systems for over seven years and has been leveraging
the capabilities of The MathWorks tools throughout his
career. Chris is based out of the Detroit, Michigan office
where he focuses on working with automotive customers
who are interested in adopting Model-Based Design.
Chris graduated from Michigan Technological University
with Bachelors in Electrical Engineering and received his
Masters in Electrical Engineering from The University of
Michigan – Dearborn.

Jonathan Friedman
Automotive Industry Marketing Manager
(508) 647-7752, Jon.Friedman@mathworks.com.
Jon leads the marketing effort to foster industry adoption
of The MathWorks tools and Model-Based Design.

Before joining The MathWorks, Jon held various
positions at Ford Motor Company that included working
on software development research at the Ford Research
Lab, working in Product Development as a Vehicle
Launch Leader at plants across North America, and as
an Electrical Engineering Supervisor. Jon has also
worked as an Independent Consultant on projects for
Delphi, General Motors, Chrysler and the US Tank-
automotive and Armaments Command. Jon holds a
B.S.E., M.S.E. and Ph.D. in Aerospace Engineering as
well as a Masters in Business Administration, all from
the University of Michigan.

Sameer M. Prabhu
Applications Engineering Manager
(248) 596-7944, Sameer.Prabhu@mathworks.com.
Sameer has over ten years of experience applying
The MathWorks products in various application areas.
As a Senior Team Lead in the Detroit, MI office, Sameer
manages a team of applications engineers focused on
working with customers in the automotive and
commercial vehicle industry to address the systems
integration challenges posed by increased adoption of
electronics in these industries. Sameer graduated from
University of Bombay with Bachelors in Mechanical
Engineering and received his Ph.D. in Mechanical
Engineering from Duke University in the area of robotic
controls and artificial intelligence. He also holds an MBA
from The University of Michigan.

The MathWorks, Inc. retains all copyrights in the figures and excerpts of code
provided in this article. These figures and excerpts of code are used with
permission from The MathWorks, Inc. All rights reserved.

©1994-2008 by The MathWorks, Inc.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of
their respective holders.

