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ABSTRACT 

Today’s vehicles are typically outfitted with passenger 
convenience features that require Human Machine 
Interfaces (HMIs). HMIs can be relatively simple – such 
as a remote key fob – or more sophisticated – such as a 
radio face plate.  Traditional development of HMIs 
involves two typically independent processes – (1) 
Physical Component Design and (2) Functional Logic 
Design.  The physical component design is developed 
by a team that usually includes both graphics and 
ergonomics designers to ensure that the HMI is intuitive 
and fits well with the interior styling of the vehicle.  The 
functional logic design follows a more typical software 
development process.  This process is based on 
functional requirements commonly written in terms of 
user requests and system responses as represented by 
the HMI.  As the complexity of the system increases, it is 
essential for the intuitiveness and ease of use of the HMI 
to advance as well.  For teams using traditional methods 
to design, prototype, and fully test an HMI, achieving this 
level of ease of use is becoming increasingly 
challenging.  In an earlier paper, the authors 
demonstrated how to create a “soft” version of the HMI 
under development and then use this to generate and 
record test vectors [1]. These test vectors could then be 
used to exercise the design under test to determine if 
the HMI logic was completely tested and if the design 
met the specified requirements.  In this paper, the 
authors will address two important workflow issues to 
support the logic design and verification of HMIs – (1) 
integration of the HMI graphics and HMI logic and (2) 
formal verification of the HMI logic. 
 

INTRODUCTION 

It is estimated that electronics and software content will 
make up 40% of a vehicle’s cost by the year 2010 [5]. In 
the past, the electronic systems that replaced 
conventional mechanical systems were used primarily to 
ensure that vehicles met stringent emissions and fuel 
economy requirements. Today, automotive 
manufacturers are expanding the use of electronics to 

introduce advanced multimedia and convenience 
features to attract technology-savvy buyers. These 
features assist the driver by providing relevant 
information such as up-to-date traffic information to 
change the planned route to a destination.  
Technologies such as hands-free phone via the car’s 
radio and wireless networking make these convenience 
features possible. In addition to assisting the driver, 
these systems can also entertain passengers through 
on-board systems such as satellite radio, DVD players, 
and so on, which can be accessed through a common 
interface. Automotive manufacturers see such systems 
as a key way to differentiate themselves from the 
competition, and also as the basis of a lucrative revenue 
stream. As a result, there is an increased emphasis on 
developing and deploying these systems to meet 
consumers’ varying requirements.  At the same time, the 
systems must be simple enough to operate and use 
easily and they must meet high quality standards to 
avoid costly recalls and software fixes. 

 
Figure 1 - Virtual Radio Faceplate HMI 
 

MODEL-BASED DESIGN FOR MULTIMEDIA AND 
CONVENIENCE FEATURES 

In an earlier paper the authors discuss the use of Model-
Based Design to address the challenges of increasing 
product complexity, more stringent performance 
requirements, and shorter product development cycles 
[1].  The use of Model-Based Design to address these 
challenges was demonstrated using the radio faceplate 
as an example. The paper described the creation of a 
“soft” version of the HMI under test to generate and 
record test vectors. These test vectors could then be 
used to exercise the design under test to determine if 



the HMI logic was completely tested and if the design 
met the specified requirements. The process outlined in 
the paper was as follows: 
 
1. Develop the “soft” HMI representation. 
2. Capture the user inputs to the HMI and populate a 

set of test vectors. 
3. Exercise the model with the test vectors, capture the 

system response and analyze whether the response 
meets the design requirements. 

4. Edit test vectors as needed based on requirements 
specifications. 

 
The previous paper built a foundation for improving the 
process by which HMI rich systems are designed and 
verified.  With a realistic virtual HMI in place, the 
engineer can connect it to a model of the logic and then 
exercise the logic as the end user would.  The physical 
HMI design places many constraints on the functional 
logic design. The ability to test the logic while developing 
it can quickly highlight any deficiencies in the 
requirements and design assumptions. 

With a set of test vectors created during the design 
process based on the requirements and design 
assumptions, formal verification of the logic through 
automatic test vector generation can reveal previously 
unconsidered test scenarios. Formal verification can 
also ensure that a complete test suite fully covering the 
model can be developed, enabling the engineer to 
exhaustively test the HMI rich system well before 
hardware prototypes have been constructed.  This paper 
discusses the importance of using the virtual HMI to test 
the system during development, connecting the virtual 
HMI to the model, and using formal verification and 
validation techniques to exhaustively test the system. 

The paper includes:  

� a detailed description of the benefits of exercising an 
HMI rich design with a realistic virtual HMI and a 
step-by-step process for connecting the virtual HMI 
to a Simulink® model   

� a discussion of formal verification and validation 
techniques using automatic test vector generation 
for analyzing model coverage  

 
INTEGRATION OF HMI GRAPHICS AND 
FUNCTIONAL HMI LOGIC 

The HMI of the system is the sole interface through 
which the user perceives and interacts with the state of 
the system.  As detailed in the earlier paper, a key 
aspect of the multimedia and convenience features is 
ease-of-use. Thus, a significant amount of time and 
effort is devoted to designing the HMIs for these 
systems in addition to designing the underlying 
electronics. 

The intuitiveness and ease-of-use of a system can only 
be determined by users actually interacting with the 

physical system or a representative virtual system.  The 
ability to interact with this logic as the customer would 
allow system testing based on functional requirements.  
When these requirements, which are often written in 
terms of the customer interaction with the interface 
device, can be tested as engineers are developing the 
HMI logic, the team can asses the intuitiveness and 
ease-of-use of the HMI while evaluating the 
requirements early on in the development process. 

Integrating the graphics with the logic supports design 
exploration of the logic as well as both technical and 
managerial reviews of logic design. The virtual HMI 
developed in the previous paper as a means to create 
test vectors can also be linked to the logic model using a 
scripting language.  To link the soft HMI to the logic, 
each HMI element needs element-specific code in the 
overall logic and graphic code. 

Because the development of the virtual HMI was 
covered in the previous paper, the details of constructing 
the soft HMI will not be covered again here.  This section 
describes the connection of a virtual HMI of the radio 
faceplate to the functional logic that was created in 
Simulink.  This connection enables the model to be 
exercised and accessed during the simulation of the 
functional logic and allows the user to perceive a 
realistic representation of the physical system. 

Figure 1 shows the virtual radio faceplate HMI that was 
described in the earlier paper and created with GUIDE, 
the MATLAB® graphical user interface (GUI) 
development environment.  This virtual HMI is a realistic 
representation of the physical radio faceplate with all of 
the buttons and indicators that customers would have 
access to in their vehicle.  The virtual HMI from the 
earlier paper was modified to include an active LCD 
display and to remove the record button, which is no 
longer required when the HMI is connected to the 
Simulink model. 

The virtual HMI provides an interface to the functional 
logic which has been modeled using both Simulink and 
Stateflow®.  Stateflow enables engineers to model the 
state driven machines and discrete event reactions 
needed in HMI rich designs.  While a detailed discussion 
of the underlying logic is beyond the scope of this paper, 
a review of the top level model architecture will help to 
illustrate how the HMI fits into the system. 



 

Figure 2 - Radio faceplate model. 
  

Figure 2 shows the top level Simulink model and the 
components that make up the system.  The model 
contains two main components, a mode manager and a 
message manager, both called by a scheduler.  The 
mode manager is the functional logic component and it 
is executed at the base rate of the model. The message 
manager is only executed when a user presses a button 
on the virtual HMI. The model also includes input and 
output interfaces used to receive button presses from 
the virtual HMI and update the LCD display. 

The button presses on the virtual HMI are captured and 
translated into a message that is transmitted to the 
message manager.  In this design, which is similar to 
how an actual radio might be architected, the message 
manager receives the messages from the virtual HMI 
input interface and translates them into commands that 
are then sent to the mode manager.  The mode 
manager does not have a separate input for each button 
press since it receives a message containing a payload 
with the requested mode change.   

Because the mode manager is modeled as it would be 
implemented on real hardware that interacts using 
communication buses, a button press is received by the 
mode manager as a request and an 8-bit value instead 
of a unique Boolean input. This messaging level of 
abstraction makes it difficult to test the system without a 
virtual HMI.  

To link the soft HMI and the logic developed, each HMI 
element will need additional element-specific code.  To 
better understand the process for connecting a button to 
the model, consider the ON/OFF button as an example.  

When the ignition key is in the ON or Accessory position, 
the radio head unit is typically powered and is waiting for 
a request from the user – for example, turning the radio 
on or selecting a desired mode (such as AM, FM, or 
CD).  The functional logic behind the HMI accepts inputs 
from the HMI, performs the decision-making logic to 
handle the user request, and displays any change in 

radio state.  An example of the functional logic for the 
ON/OFF button modeled using Stateflow is shown in 
Figure 3. 

 

Figure 3 - HMI functional logic modeled in 
Stateflow®. 
 
When the radio is first powered up, it enters the standby 
state by default and waits for a user to press the 
faceplate ON/OFF button before entering the ON state 
with the appropriate audio mode.  Using the virtual HMI, 
the engineer can exercise the model just as the 
requirement is written to ensure the design fulfills the 
requirement.  

The engineer can also watch the indicators on the virtual 
HMI to determine if the radio has entered the ON state 
and is in the desired mode.  Figure 1 shows the virtual 
HMI when the radio is in the Standby state and Figure 4 
displays the virtual HMI when the radio head unit is in 
the ON state with FM mode selected (as indicated by the 
LCD display). 

 

Figure 4 - Virtual HMI FM mode state. 
 
This is an example of exercising the model through the 
virtual HMI to test the logic and ensure that it is 
functioning as expected and meeting the requirements.  
In the event that the system does not respond properly 
to the button presses as described by the requirements, 
model animation capabilities enables the engineer to 



investigate visually the reaction of the internal HMI logic 
to the button presses.  In Figure 5, the FM state is 
highlighted in blue designating this as the active state 
during simulation.  Highlighting provides the engineer 
with immediate feedback on the system’s response to 
button presses. 

 

Figure 5 - Stateflow® animation. 
 

The virtual HMI enables engineers to evaluate ease-of-
use by analyzing end user interactions with the system.  
Likewise, the ability to interact live with the system 
model during simulation provides valuable insight during 
development and throughout system verification and 
validation.  

In the previous paper, MATLAB GUI-building tools were 
used to layout and generate the virtual HMI with a 
number of pushbuttons allowing the engineer to 
stimulate the model.  For this paper, an LCD display was 
added to display the state of the system because the 
buttons now affect the functional logic model.  Gauges 
Blockset™ provides display components, including the 
LCD display used in this example that can be accessed 
from MATLAB GUIs. 

The virtual HMI can be connected to the model using the 
following process: 

1. Identify the inputs and outputs of the system that the 
virtual HMI will control and display. 

2. Add a unique source block to the model to 
correspond to each input controlled by the virtual 
HMI. 

3. Translate the virtual HMI button presses to the 
source block values using MATLAB code. 

4. For each display element of the HMI, create unique 
sink blocks that accept model outputs to be 
displayed using MATLAB code. 

 

Each of these steps will be explained in detail within the 
context of a radio head unit model.  

IDENTIFYING INPUTS AND OUTPUTS 

The radio faceplate virtual HMI contains 21 different 
buttons that can be used as system inputs.  This 
example focuses on the ON/OFF button and describes 
the steps needed to connect it to the Simulink model. 
The same process can be applied to each of the 21 
buttons. 

Because the sole indicator on the radio faceplate is the 
LCD display, only one output from the system is 
required.  In this paper, only the ON/OFF button will be 
connected to the Simulink model.  With the input and 
output identified, step one of the process is complete.    

ADD SOURCE BLOCKS 

In Simulink all signals or inputs to a system must be 
driven by a source.  One method for connecting the 
virtual HMI to the model is to add a Constant block for 
each input signal to the model.  By modifying the 
automatically generated function callbacks in the 
MATLAB GUI code, an engineer can change the value 
of the Constant block programmatically when a button is 
pressed.  Figure 6 shows the Constant blocks added to 
the front end of the Simulink model to drive the system 
inputs.  To allow the HMI to alter the value of a Constant 
block, the Inline parameters on the Optimizations pane 
of the Constant block’s Configuration Parameters dialog 
must be unselected.  
 

 
Figure 6 - Virtual HMI Constant blocks. 
 
ADDING MATLAB CODE 

With the Constant blocks in place, the MATLAB code to 
change the value of the Constant block can be added to 
the existing function callbacks automatically generated 
by GUIDE.  To link the ON/OFF button from the HMI to 
the functional logic, add the following code to the 
existing ON/OFF function callback: 
 
% --- Executes on button press in power_pushbutton. 



function power_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to power_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
    power_current_state = 
get_param('radio_control_function2/UserRequest/Inputs/HMI_Input_Driver/
ONOFF', 'Value'); 
    
set_param('radio_control_function2/UserRequest/Inputs/HMI_Input_Driver/O
NOFF', 'Value', num2str(~str2num(power_current_state))); 
 
 
In this example, the code retrieves the current state of 
the ON/OFF Constant block using the get_param() 
function, and toggles the value using the set_param() 
function. 

The same technique can be used for each of the buttons 
in the virtual HMI.  

CONTROLLING THE VIRTUAL HMI LCD 

With the inputs mapped to the Constant blocks in the 
Simulink model, the model can be excited through the 
use of the virtual HMI.  During simulation, pressing the 
buttons on the virtual HMI will cause the states to 
execute the appropriate transition for each button press.  
Technically, this is enough functionality to exercise the 
model and perform interactive testing of the model while 
visualizing state transitions in Stateflow charts.  To fully 
verify that the functional logic is transmitting the 
appropriate output messages or toggling the appropriate 
indicators, the output of the model should be connected 
to the LCD display in the virtual HMI. 

There are a number of methods to control the virtual 
HMI LCD and display the various messages specified by 
the functional requirements.  The user interface displays 
can all be accessed from the MATLAB workspace.  
Using a handle to the virtual HMI that is provided when 
the interface is instantiated, an engineer has complete 
control over each of the display components of the user 
interface.  The model can be set up to automatically 
open the appropriate virtual HMI when the model is 
opened and attach a handle to the user interface for 
controlling the LCD display component. 

When the user interface is instantiated, a handle to the 
user interface is provided as a return value.  In the radio 
faceplate example, the virtual HMI was created in 
GUIDE and named “gen_faceplate”.  GUIDE 
automatically creates a MATLAB script with all the 
callbacks. When executed, this script will instantiate the 
user interface and return a handle to the user interface. 
The following two MATLAB commands can be used to 
instantiate the user interface and obtain its handle: 

% Instantiate GUI and create a handle 
  
h = gen_faceplate;          % instantiate the user interface 
hGUI = guihandles(h);    % create a structure of user interface handles 

 
Simulink can use these handles through MATLAB and, 
as in this example, assign various sets of string data to 
the LCD display.  One way to do this is using a MATLAB 

Function block in Simulink that calls a MATLAB function 
from within Simulink for each time step during the 
simulation. 

The Simulink model uses a MATLAB set() function in the 
MATLAB function block to control the text displayed on 
the LCD display in the virtual HMI. 

 

Figure 7 - MATLAB® function block controlling LCD 
display. 
 

Similar to how a message definition set may be 
implemented in C code, a MATLAB cell array is created 
that stores a set of messages to be displayed on the 
LCD.  Stateflow logic keeps track of which message to 
display as an index value into this cell array.  This cell 
array is referenced in the MATLAB Function block, as 
shown in Figure 7.  The MATLAB code that defines the 
message set is shown below.   

% define message set 
clear message_set; 
  
message_set{1} = ''; 
message_set{2} = 'ON'; 
message_set{3} = 'NO DISC'; 
message_set{4} = 'DISC'; 
message_set{5} = 'PLAY'; 
message_set{6} = 'REWIND'; 
message_set{7} = 'FF'; 
message_set{8} = '101.1 FM'; 
message_set{9} = '1050 AM'; 
 

With the realistic virtual HMI implemented, the engineer 
can interact with the system enabling rapid test case 
generation to ensure the design meets the requirements 
and the design intent.  Similar to the test case logging 
described in the previous paper, the engineer can use 
the virtual HMI to interact with the model, storing the 
sequence of button presses as signals using the Signal 
Builder source block in Simulink for testing in the future. 

The process in this case is somewhat simpler, because 
the connection between the virtual VMI and the Simulink 
model streamlines signal logging. Simulink provides an 
easy method to log signals to the MATLAB workspace.  
Once the signals are logged to the workspace, the 
Signal Builder API, as described in the earlier paper, can 

set(hGUI.activex1, 'AlphaNumeric',… 
char(message_set{u})) 



be used to populate Signal Builder with the test case to 
be saved.  Signal Builder blocks can then be used to 
store the entire suite of test cases for running the 
complete test suite against the model without interaction 
from the user. Engineers can log the outputs and later 
visualize and the compare the results. 

FORMAL VERIFICATION OF THE HMI 
FUNCTIONAL LOGIC 

Once the HMI logic design is complete, test engineers 
can create a set of reusable test vectors using the 
process discussed in the previous paper and highlighted 
above.  However, given the combinatorial complexity of 
the current set of automotive HMIs, it is nearly 
impossible for test engineers to fully exercise all the 
logic in the design. 

For example, given a set of m buttons on a typical HMI 
in which each button can lead to n different sub-menus 
with a different set of functions for each button, and 
where “no function” is also considered a function to be 
verified, a test engineer would have to write mn tests. If a 
combination of buttons enables other functionality, such 
as diagnostics, then the set of tests becomes even more 
complicated.  Clearly, guaranteeing that the logic is fully 
tested goes well beyond the functional testing specified 
by the requirements and what can be feasibly 
accomplished by manually pressing all of the button 
combinations. 

As an example, the requirement that “when the battery is 
powered (key in Accessory or ON position), the audio 
unit goes into the PowerOn mode,” also requires that all 
of the buttons be active.  Moreover, when the radio is in 
PowerOff mode, the unwritten requirement is that all of 
the buttons need to be inactive. 

Using tools that take advantage of formal methods such 
as Simulink® Design Verifier™ [9], engineers can 
analyze the logic models to determine the inputs that will 
result in full functional testing of the logic and identify 
unreachable states (such as switch conditions that 
cannot occur) [9].  

Using software that implements formal methods, 
engineers can generate tests for models to satisfy model 
coverage and user-defined objectives. Engineers can 
also prove model properties and generate examples of 
violations.  

For this paper, we are using Simulink Design Verifier, 
which supports the following model coverage objectives: 
decision, condition, and modified condition/decision 
coverage (MC/DC). Additionally, one can define custom 
test objectives directly using modeling constructs 
available in the modeling packages, such as the design 
verification blocks in Simulink and Stateflow. With 
property proving, engineers can explore their design for 
flaws, missed requirements, and unwanted states, 
issues that are difficult to uncover by simulation. 

The radio faceplate example has seven buttons that 
have been made active in the virtual HMI, which makes 
it a significant challenge to manually create the required 
number of test cases to completely test the specification.  
In addition, there are a number of test case possibilities 
that are not covered by the requirements or may not 
have been considered by the designer. 

Requirements-based testing is a necessity and is an 
effective first pass when developing test vectors, but 
there are many button press sequences or internal 
events that are not explicitly covered in the requirements 
and that may cause undesirable behavior of the radio.  
These conditions are the most difficult to test and can go 
undetected until the radio has been placed in the vehicle 
for testing on a bumpy road where it is common for the 
driver to press buttons out of order.  For example, when 
inserting a CD, the user may accidentally press the fast-
forward (FF) button before the CD has been fully 
inserted.  A typical test engineer developing tests to the 
requirements specification would insert the disc and wait 
for it to start playing before pressing the FF button.  In 
the real world scenario, because the FF button was 
pressed prior to the disc being fully inserted, the 
behavior of the radio for this unexpected condition is not 
known. 

Formal methods can assist in finding these undesirable, 
unintended conditions. Many of these scenarios go 
untested when using manual test vector generation 
techniques driven by the requirements simply because it 
is very time consuming and difficult to think of these 
abnormal button presses. Formal verification methods 
and automatic test vector generation enable engineers 
to analyze the system as an independent party that has 
no preconceived notions of how the system is designed.  
Formal verification techniques with automatic test vector 
generation analyze the system and automatically 
generate test vectors based on the possible decision 
transitions contained in the system.  

In the HMI model, the mode manager contains all of the 
functional logic. As a result it makes sense to rigorously 
test this component to achieve close to 100% model 
coverage and determine if there are any unreachable 
states within the model.  In this example, the mode 
manager is an atomic subsystem; by right clicking on the 
subsystem block and execute Simulink Design Verifier, 
engineers can automatically generate tests as shown in 
Figure 8. 



 

Figure 8 - Executing Simulink® Design Verifier™ on 
a subsystem. 
 

Once the portion of the system to be tested is selected, 
the model will be analyzed and a list of test objectives is 
created to achieve the model coverage objectives 
selected by the engineer.  In the radio faceplate case, 
decision coverage is all that is required given the nature 
of the functional logic in the mode manager subsystem 
as shown in Figure 9. 

 

Figure 9 - Simulink® Design Verifier™ test 
objectives. 
 
Each of the identified test objectives corresponds to 
decision logic in the mode manager and will require a 
test case that can satisfy the logic for both the TRUE 
and FALSE case in order to be fully covered.  Condition 

coverage and MCDC are more complicated coverage 
metrics, but they are not required in this example given 
the logic in the model.  Simulink Design Verifier will 
attempt to generate a test case to satisfy each of the test 
objectives if it is possible, meaning there are no 
unreachable states or unachievable transitions. 

Any states or transitions which are unreachable or are 
not able to be tested given the definition of the standard 
coverage metrics will be reported to the engineer.  It is 
not necessarily imperative to obtain 100% model 
coverage, even though it should be the goal, it is more 
important to be able to understand why there might be 
cases where 100% model coverage is not achievable.  
In these cases, the engineer will need to evaluate 
whether there is a deficiency in the design requiring a 
change or if the lack of coverage is expected. 

For the radio head unit, 21 test cases were generated to 
test all of the identified objectives.  After generating the 
test cases, a new test harness model is automatically 
generated. The system under test is copied into this 
model and connected to a Signal Builder block 
containing each of the automatically generated test 
cases.  Figure 10 shows the automatically generated 
test harness and Figure 11 shows the Signal Builder 
block containing each of the automatically generated 
test vectors. 

 

Figure 10 - Automatically generated test harness. 
 

 

Figure 11 - Automatically generated test vectors. 



 
A common technique is to merge the test vectors that 
were previously generated using the recorded virtual 
HMI button presses with the automatically generated 
test vectors.  For this example, the two sets of test 
vectors can be combined using the Signal Builder API in 
Simulink.  The MATLAB code to merge two signal 
builder blocks is shown below. 

function merge_sig_build(SigBuild1, SigBuild2) 
% 
% Merge the contents of two signal builder blocks 
% 
% SigBuild1 = destination signal builder block where the contents of 
% 
% SigBuild2 = additional test vectors to be merged with SignBuild1 
% 
  
%% Determine number of groups to be copied from the signal builder 
% block 
[sbTime,sbData, sbSigLabels, sbGroupLabels] = 
signalbuilder(SigBuild1); 
NumGroups = size(sbData,2); 
  
signalbuilder(SigBuild2, 'append',sbTime, sbData, sbSigLabels, 
sbGroupLabels); 
 

With the test suite containing both the requirements 
based test cases and the automatically generated test 
cases, the engineers can be confident that they are 
exhaustively testing their system and clearly understand 
how it will perform prior to it being implemented on the 
hardware.  With the goal of achieving 100% model 
coverage with the test suite, requirements based test 
and formal methods achieved the full 100% decision 
coverage as displayed in Figure 12. 

 

Figure 12 - Radio head unit model coverage report. 
 

CONCLUSION 

Using both functional and formal verification techniques, 
automotive engineers can develop their HMI designs 
with confidence that random button presses will not 
result in unintended functionality of the device from 
untested logic.  This paper demonstrates how engineers 
can connect a virtual HMI to a Simulink model and 
interactively test and asses the functionality of the HMI 
logic.  Considering the complexity of the functional logic 
and the time needed to fully test an HMI rich design, 
formal verification techniques can be applied to identify 
unreachable states or transitions which cannot be 
satisfied using the inputs to the system. 
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