
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841 Fax: (724) 776-5760 Web: www.sae.org

SAE TECHNICAL
PAPER SERIES 2004-01-0894

Caterpillar Automatic Code Generation

Jeffrey M. Thate and Larry E. Kendrick
Caterpillar, Inc.

Siva Nadarajah
The MathWorks, Inc.

Reprinted From: Electronic Engine Controls 2004
(SP-1822)

2004 SAE World Congress
Detroit, Michigan
March 8-11, 2004

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of SAE.

For permission and licensing requests contact:

SAE Permissions
400 Commonwealth Drive
Warrendale, PA 15096-0001-USA
Email: permissions@sae.org
Fax: 724-772-4891
Tel: 724-772-4028

For multiple print copies contact:

SAE Customer Service
Tel: 877-606-7323 (inside USA and Canada)
Tel: 724-776-4970 (outside USA)
Fax: 724-776-1615
Email: CustomerService@sae.org

ISBN 0-7680-1319-4
Copyright © 2004 SAE International

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE.
The author is solely responsible for the content of the paper. A process is available by which discussions
will be printed with the paper if it is published in SAE Transactions.

Persons wishing to submit papers to be considered for presentation or publication by SAE should send the
manuscript or a 300 word abstract of a proposed manuscript to: Secretary, Engineering Meetings Board, SAE.

Printed in USA

 1

2004-01-0894

Caterpillar Automatic Code Generation

Jeffrey M. Thate and Larry E. Kendrick
Caterpillar, Inc.

Siva Nadarajah

The MathWorks, Inc.

Copyright © 2004 SAE International

Abstract

Automatic code generation from models is
actively used at Caterpillar for powertrain and
machine control development. This technology
was needed to satisfy the industry’s demands
for both increased software feature content, and
its added complexity, and a short turn-around
time. A pilot development effort was employed
initially to roll out this new technology and shape
the deployment strategy. As a result of a series
of successful projects involving rapid prototyping
and production code generation, Caterpillar will
deploy MathWorks modeling and code
generation products as their department-wide
production development capability.

The data collected indicated a reduction of
person hours by a factor of 2 to 4 depending on
the project and a reduction of calendar time by a
factor of greater than 2.

This paper discusses the challenges, results,
and lessons learned, during this pilot effort from
the perspectives of both Caterpillar and The
MathWorks.

Introduction

This objective of this paper is to describe the
activity and results of an ongoing effort by CAT
Electronics1 and The MathWorks2 to implement
an automatic code generation capability for
production embedded systems. The stage for
this activity was set by an initial effort that
accelerated the development of control
algorithms for CAT engines and machines. The

solution was based on the control system
development process, which is iterative by
nature and requires analysis, simulation, and
testing capabilities.

This paper describes the key steps being used
to achieve the solution and is presented as
follows:

1. Initial Investigation and Roll-out
2. Projects and Applications
3. Results and Benefits
4. Lessons Learned
5. Future Plans

Initial Investigation and Roll-out

Utilizing hand-coded software in our previous
process had caused long, time-consuming,
iteration cycles that imposed severe limits on the
number of iterations we could perform to
develop a system. This in turn required control
system designers to make final design decisions
without adequate information. The solution
identified and implemented was to utilize a
model-based, rapid-prototyping capability.

With a model-based, rapid-prototyping
capability, strategy models are graphically
defined and tested against plant models using
simulation. Code is then automatically
generated from the graphical model and
executed on rapid-prototyping hardware, which
is separate from the Electronic Control Module
(ECM). The rapid-prototyping configuration that
CAT implemented is shown in Figure 1.

 2

Figure 1: CAT Rapid Prototyping Configuration

The rapid prototyping computer has a number of
attractive features that are useful for algorithm
design:

• Avoids production ECM computing load
limits

• Avoids production ECM memory limits
• Utilizes ECM power output electronics
• Utilizes ECM specialized sensor inputs
• Has additional I/O available as needed
• Has additional datalinks available as

needed
• Eliminates concern with production

coding issues

The rapid-prototyping capability was used very
successfully on a number of CAT projects. This
success led naturally to the question of what
would be needed to generate code from these
same models and use that code in production
ECMs and systems. This provided the
motivation for the activity described in this
paper.

Production Code Generation Process and
Tools

It was recognized early in the effort to develop a
production automatic coding capability that it
was critical to define a process for designing and
deploying the generated code. It was also
necessary to have tools that were tailored to
adequately support the process.

Among the requirements identified for the
process and tools were:

• Process and tools must start with
requirements and proceed to production
code generation and module
deployment

• Tools used in each step of the process
must be compatible

• Each step in the process must deal with
a limited number of issues

• Output of process (code module) must
integrate smoothly into existing
applications and code

Based on these requirements and our
development experience in both rapid-
prototyping and hand-code development
environments, we defined our process as shown

xPC TargetBox

Matlab Tools

ECM

ETHER

Executable code Machine/Engine Sensors &
Actuators

CAN

 in Figure 2.

 3

Figure 2: CAT ECM Development Process

 4

In looking at tools to implement this process it
was recognized that not only was the tool set
required to handle analysis, simulation rapid
prototyping, code generation, data acquisition
and analysis, but the tool set must be modifiable
to meet our unique coding and system design
and integration standards. This means there
must be willingness and capability on the part of
the tool supplier to adapt the standard tool set
as needed.

We selected The MathWorks as our tool supplier
and settled on the tool chain of
MATLAB®/Simulink®/Stateflow®/Real-Time
Workshop Embedded Coder. The standard
capabilities of the tool set were an important
factor in our decision, but we also appreciated
the open nature of the MathWorks environment
and the availability of technical support through
MathWorks Consulting services.

Projects and Applications

A series of pilot projects of increasing complexity
were initiated in order to develop a production
autocoding capability. Each pilot activity was
intended to generate useful results in order to
justify continued development.

The pilot activities are:

• Manually Integrated Automatically
Coded Functions

• Manually Integrated Automatically
Coded Applications

• Automatically generating code for
Functions (automated integration)

• Autocoding Applications (automated
integration)

Manually Integrated Automatically Coded
Functions

The first pilots were focused on Autocoding
functions of modest complexity and integrating
them into a handwritten application. The code
was expected to conform reasonably well with
CAT coding standards, be reasonably efficient in
terms of execution time and memory
requirements, and be easy to associate the
generated code with the defining Simulink
subsystems (in other words, it had to be
readable).

The conversion of the rapid-prototyping model
into a form suitable for an embedded application
required conversion of floating-point data to a
discrete fixed-point implementation. Once
converted to the discrete format the issue of
code output format must be addressed. The
code output format from The MathWorks code-
generation tools was sufficiently configurable to
CAT’s coding standards and code readability
objectives were easily achieved. Execution time
was initially longer than expected. Investigation
showed that the problem was associated with
the standard lookup table techniques. The
Simulink lookup table capability was extremely
flexible and general, but this lead to some
inefficiencies. CAT Electronics had over time
developed very efficient code for providing
lookup tables. Working with MathWorks
consultants, a modification to the tools was
made that allowed the use of CAT Electronics
lookup code. Once this was accomplished the
efficiency objectives were met.

The automatically coded model was then tested
in a simulation environment utilizing the Simulink
S-function capability to insure that the
conversion process had not introduced errors
into the strategy. In order to integrate the
automatic code with the handwritten
environment, a handwritten “wrapper” was
required. The creation of such wrappers was a
reasonably simple task but obviously one which
took some time and required significant software
development skills. Even with the need to
develop wrappers for the automatically coded
functions, the efficiencies achieved were
substantial and the approach was used to
accelerate development of multiple critical
product development programs including:

• Advanced Combustion Technology
• Track Type Tractor (TTT) Auto Carry
• Backhoe Loader (BHL) Swing

Compensation
• BHL Implement Cross Modulation

Example of Manually Integrated Automatically
Coded Functions

CAT ACERT Program
The purpose of the ACERT Program was to
develop an engine control system to enable
Caterpillar, Inc. diesel engines to meet the
EPA’s 2004 on-highway truck emissions
regulations. The overall project involved

 5

development of new combustion technology,
new fuel system components, and new
monitoring and control strategies. Initial plans
for the project called for the use of control
system rapid-prototyping technology, but not
production automatic code. Due to the very
compressed time schedule it became apparent
that it would be necessary to pull forward use of
production automatic code. The approach taken
was to develop and automatically code specific
features and then manually integrate the
automatic code into the total application.
Features selected for development included:
smart wastegate control, independent valve
actuation (IVA), IVA diagnostics, cold start fuel
trimming strategy, torque limiting, and derate
strategy.

Manually Integrated Automatically Coded
Applications

Based on the success with developing
automatically coded functions, pilot projects with
a significantly higher level of complexity were
undertaken. These projects were primarily for
external customers and had very tight time and
resource constraints. The objective in these
pilots was to develop all the code associated
with application-specific functionality using the
model-based development process and tools.

Platform services (basic I/O, operating system,
datalink, etc.) were lifted from previous hand-
coded projects with limited additional hand-code
development to provide services, such as
unique I/O, not already developed. This general
approach has become central to our long term
approach to application development. Software
is divided into two basic categories: platform
services and application functionality. Code
associated with platform services is handwritten
and is intended to be common across all
applications. Code associated with application
functionality is automatic coded and is
developed using model based process and
tools.

Projects completed to date include HUMVEE
engine and vehicle control, engine control for a
European truck manufacturer, and a controls
implementation for a refuse hauler. These
projects again required that a handwritten
wrapper be developed to provide the interface
between the platform services and the
application functionality. These projects utilized

the simulation development, rapid prototyping,
and targeted automatic code capabilities
provided by The MathWorks tools. They have
demonstrated a dramatic reduction in both
development time and resources. Data was
collected from similar projects that utilized our
traditional development and the results showed
a reduction in time of a factor of two to four and
a reduction in resources by a factor of
approximately four. This was accomplished
without the benefit of an infrastructure intended
to support model-based software development.

Example of Manually Integrated Automatically
Coded Application

HUMVEE
The project involved development of a complete
engine monitoring and control system.
Production automatic code was used for the
engine monitoring and control functionality
including: engine governing (speed and torque),
timing control, boost control, EGR control, cruise
control, sensor data processing, and emissions
diagnostics (OBDII). Use of production
automatic code made it possible for the project
to meet all performance objectives, maintain an
aggressive schedule, and bring the project in
under budget.

Automatically generating Code for Functions
(Automated Integration)

The objective of the next set of pilots was to
eliminate the need to write hand-code wrappers
in order to integrate automatically coded
functions into an application. To accomplish this
there must exist a stable defined interface that
the automatic code generation can target. The
approach taken was to target the interface CAT
Electronics developed to facilitate integration of
hand-coded functions. This interface is referred
to as the CAT Package Architecture.

CAT Package Architecture Overview

Caterpillar, Inc. has implemented an in-house
software architecture standard for hand coding
in which an application consists of several
functional components (features) with a well
defined interface boundary. For instance, if we
consider a diesel engine controller as an
application then spark control, fuel control and
idle speed control represent functional
components as shown in Figure 3.

 6

Figure 3: Functional Components

Figure 4: Code Generation General Steps

Fuel
Control

Spark

Control

Application (Diesel Engine Controller)

�.

OSEK Operating
System

Pointers to
Data and
Methods

Pointers to
Data

Real Time Workshop (RTW)

RTW Embedded Coder

Module Packaging Tool (MPT)

CAT Custom Tools

Simulink Model for a function of an
Application

Caterpillar�s Software
Architecture Standard code

 7

CAT’s software architecture standard defines
the interface between functions (or features) as
well as the interface between a function and the
Operating System. Each function consists of an
initialization method, main methods, and
configuration data. There is a separate main
method for each execution rate of the function.

It was decided to tailor The MathWorks
automatic code generation output to be
compatible with this software architecture in
order to eliminate the need for developing
unique wrappers for each automatically coded
feature. As a result there is no need to hand
modify the generated code for Operating
System, I/O, or application integration. Using
this approach, some functions of an application
can be automatically generated from a Simulink
model while others can be hand coded and, at
the end, all of them are easily integrated and
coexist seamlessly. Figure 4 illustrates the
general steps in the autocoding process.

The necessary tool customization has been
completed and the capability utilized on several
projects including:

• Compact Common Rail Fuel Control
• Motor grader All-Wheel Drive
• BHL Implement Motion Control
• Motor grader Steering

As would be expected, eliminating the need for
custom wrappers has reduced the in-depth
software development expertise required to
implement an automatically coded function and
has further reduced the development time and
resources.

Example of Automated Integrated or
Automatically Coded Function

Compact Common Rail (CCR) Fuel System
Management
The CCR project involved developing the fuel
system management control including shot
selection, pump control, injection/trimming
control, and injection trimming. The code was
generated to meet CAT Package Architecture
and was thus able to be integrated into the total
engine control package without the need for a
handwritten wrapper. Use of model-based
development allowed direct input from fuel
system experts without the need for complex
communications between fuel system experts
and software developers.

Autocoding Applications (automated integration)

The next step in enhancing the development
environment is intended to allow a developer to
develop and implement an application
completely in a graphical environment. To
accomplish this will require development on both
the model-based development environment and
the platform services portion of the development
environment. On the platform side, the concept
is to implement a series of platforms, each with
a well defined set of platform services and well
defined and stable interfaces to these services.
On the model-based side, the concept is to
incorporate interfaces to the platform services as
blocks in the Simulink graphical-development
environment.

With these two capabilities, implementation of
an application completely from the graphical
environment will be possible. Projects are
currently underway to develop requirements and
technical solutions to implement our vision and
an initial implementation is targeted for early
2004.

Results from Pilots

As the Pilots were conducted, an attempt was
made to evaluate the benefits being achieved
(calendar time reduction and manpower
reduction) and to monitor for any unintended ill
effects (code quality, efficiency, and readability).
No projects were conducted in parallel with
competing methodologies and tools, so the
approach used was to look at projects that have
similar content to the pilot projects but had
utilized our traditional development approach.
As stated previously, the data collected
indicated a reduction of man hours by a factor of
from 2 to 4, depending on the project, and a
reduction of calendar time by a factor of greater
than 2. Because the functional testing is tightly
integrated into the strategy development, both in
the desk top phase and in the lab/field testing
phase, along with the absence of errors in the
code generator itself, the quality of the code
developed has been judged as being excellent.
A limited number of comparisons of execution
time and memory utilizations have been
conducted. Based on this admittedly limited set
of evaluations and the ability to incorporate hand
code for critical functions if necessary, code size
and computational requirements have been
judged to be comparable to our traditional hand-

 8

code developed products. Readability of the
generated code has been judged as acceptable
and our policy has been to conduct all
debugging at the model level and not at the
code level.

Lessons Learned

Adoption Varies With Developer Background

Developers who have primarily a control system
design background adopt the model-based
approach with enthusiasm. Developers with
primarily Computer Science backgrounds are
uncomfortable with model-based development
and require significantly more time and
information prior to adopting the methodology.

Integration with Production Systems Requires
Tailoring of Tools

Each development organization has a multitude
of tools and processes that define the total
development environment (version control,
coding standards, build process and tools, etc.)
In order to achieve maximum efficiency, it is
necessary that the model-based development
process and tools interface seamlessly with the
larger total development environment. In many
cases that means the model-based environment
must be tailored to the larger environment.

Vendor Support Critical

The need to modify the model-based tools leads
immediately to the need for strong vendor
support. While it would have been possible for
CAT to assume this responsibility, it would have
been expensive and inefficient. We understand
our applications and our development
environment but we are not tool experts. To

acquire the necessary knowledge would have
been very time and resource consuming. In
addition it would likely lead to approaches that
are not in step with the approaches being taken
by industry, which leads to future support
problems. The vendor obviously has the tool
expertise needed and is more in tune to industry
trends.

One Step at a Time

Model-based development is a radical departure
from traditional development approaches. The
steps necessary to completely implement a
production automatic code capability are not
available from a cookbook and the internal
systems that must be accommodated are not
clear at the beginning. CAT has had good
success with a strategy that incrementally
moves from simulation to rapid prototyping to
automatically coded functions and finally to
automatically coded applications. This approach
has limited the complexity of the individual
efforts and has facilitated the cultural and
infrastructure changes that must be made.

Future Plans

Based on the successful Pilot programs, we are
deploying the model-based tools and process
across the department for Machine and Engine
Monitoring and Control Development. Additional
improvements to the tools, the development
process, and to the infrastructure are planned to
further reduce the time and effort required for
application development.

References
1. www.cat.com
2. www.mathworks.com

