
Originally published at Embedded World, 17-19 February 2004, Nuremberg, Germany

1

Embedded Steer-by-Wire System Development
Joachim Langenwalter and Tom Erkkinen

The MathWorks

Abstract

Model-based design enables the automatic
generation of final-build software from models
for high-volume automotive embedded
systems. A software engineering framework
is needed to support this.

This paper presents a framework of
processes, methods, and tools for the design
of automotive embedded systems. A steer-by-
wire system serves as an example.

Introduction

Production code successes have recently
been reported in various industries from
companies including Denso, Motorola, and
Toyota [1]. This technology is taking hold as
an important component within the next
evolution of software development.

Although the impact on the software
engineering process as a whole is
understood, it has not been clearly
established. This is especially apparent to
participants of previous, similar evolutions
including the migration from machine code, to
assembly code, and then to source code.

With increased abstraction and automation
came new processes, methods and tools.
Waterfall processes have fallen by the
wayside in favor of spiral and iterative
approaches. Real-time methods have
appeared, displacing static flow design. New
tools have arisen such as IDEs with
debuggers, optimized compilers, and
automated testing tools.

However, due to difficulty of use, lack of
understanding, or limited tool support, not
every good idea has flourished. Evidence
shows that these methods and tools aren’t
always practical for mainstream production

usage. For example, formal methods where
proofs are used to ensure software
correctness are written in a language that
only a few experts worldwide truly
understand. Further, real-time case tools in
the 1980s aided design, but did not provide
an easy path to final code.

Production code generation has done well in
the early adoption stage, due mainly to its
practicality. However, further growth requires
integrated process, methods, and tools to
support it. A new process will be successful
only with the methods and tools needed to
support it. If one of these pieces is missing,
the effort to reengineer a company’s mature
embedded system is no longer feasible or
practical.

This paper presents such a framework
focused on production code generation:

• Process – Model-based design
• Methods – Modeling, simulation, rapid

prototyping, production code
generation, model testing and
coverage, and in-the-loop testing

• Tools – Development tools, V&V
tools, and integral tools

Process

Model-based design supports the needs of
controls/DSP systems engineers and software
developers by providing a common
environment for graphical specification and
analysis. In this process, models are made
and used to specify system data, interfaces,
feedback control logic, discrete/state logic,
and real-time behavior.

Model-based design is used in nearly every
industry that requires embedded control
systems development. It is particularly well-
entrenched in development processes for
embedded applications such as large-scale

2

automotive electronic control units. DSP and
communications applications also use this
approach, but emphasize modeling and
prototyping rather than production code
generation.

To satisfy these various applications, the
model-based design process must address
the needs of safety-critical systems such as
steer-by-wire systems. The process must
also yield a final, executable code that is
extremely compact, fast, and traceable. This
is due to the high-volume nature of mass-
produced ECUs, which necessitate the use of
low-cost, fixed-point microcontroller units and
DSPs.

Model-based design fits within the context of
any process framework, including those
characterized in IEEE Software Engineering
Standards [2].

IEEE Std. 730 applies to any general-purpose
software project. A good understanding of its
process framework results from a review of its
stated requirements for “critical” project
documentation.

IEEE Std. 730 requirements include:
• Software Requirements Specification

(SRS)
• Software Design Description (SDD)
• Software Verification and Validation

Plan (SVVP)
• Software Verification and Validation

Report (SVVR)
• User Documentation
• Software Configuration Management

Plan (SCMP)
• Other documents including Software

Project Management Plan (SPMP)

A common way to view a software process is
through use of the V diagram, as shown in
Figure 1. The diagram corresponds to most
engineering processes, however, the process
is iterative with many repetitive steps
throughout the development life cycle.
The software process in this diagram is
composed of:

• Development (requirements, design,
coding, and integration)

• Verification and Validation (V&V)
• Integral (software configuration

management, requirements
traceability, and documentation)

Figure 1: V diagram of software process

Model-based design places great emphasis
on process iterations, early testing, and reuse
throughout the development process, making
it both unique and powerful. The practicality
inherent to this process is demonstrated at
the bottom of the V: production code
generation is an automatic transition from
design.

In model-based design, a block diagram or a
state diagram model can serve as the system
and software requirements, software design,
or, with a slight change of perceptions, the
source code.

Also unique to this process is the extensive
V&V effort that is made prior to a final build.
The benefit of early V&V is clear: fewer bugs
will be found and less rework will be
performed during final system integration and
test. Catching a bug on the desktop is highly
preferred to encountering it during a winter
test drive in Finland. Organizations can

System
Requirements

SW
Requirements
- High Level
- Derived

SW Design:
- Architecture
- Low Level
- Derived

Code
Generation:
- Source
- Object

Low Level
SW

Integration

Final SW
Integration

HW/SW
Integration

V&V
SCM
RT
Doc

3

leverage this benefit to achieve faster time to
market.

Methods and Tools
Model-based design methods are employed
during the software engineering process.

The development methods include:
1. Behavioral Modeling
2. Detailed Software Design
3. Distributed Architecture Design
4. Production Code Generation
5. Embedded Target Integration

The V&V methods include:
a. Simulation and Analysis
b. Rapid Prototyping
c. Model Testing and Coverage
d. Code Tracing and Reviews
e. Hardware-In-the-Loop (HIL) Testing

The Integral methods include:
a. Source Control Interface
b. Requirements Management Interface
c. Report Generation

A concise description of each development
method is provided below, with examples and
tool support information. Note that all the tools
shown herein are commercially available [1].
The following sections step through the
development activity and include key V&V
methods. Finally, the paper will conclude with
the integral components.

1. Behavioral Modeling

Models are used for specifying requirements
and design for all aspects of individual
subsystems (e.g., steer-by-wire).

A typical system includes:
• Inputs (e.g., steering wheel sensors)
• Controller or DSP model
• Plant model (DC motor, rack and

pinion, wheels)
• Outputs (change of direction)

In Figures 2 and 3, a system model can be
created to represent the desired behavior
using control system block diagrams for

feedback control, state machines for discrete
events and conditional logic, and DSP blocks
for filters.

1
Elevator CMD

-K-

Proportional Gain

T(z+1)

2(z-1)

Integrator

-K-

Integral Gain

1/1000

|u|

f()
do_gs

2
gs_dist

1
gs_theta_err

Figure 2: Feedback model of a PI
controller for steer-by-wire

Figure 3: Power management to maintain
power level for x-by-wire system

Simulation and Analysis

The model is then executed and analyzed to
ensure that the requirements are satisfied,
using methods such as time- or event-based
simulation and frequency domain analysis.
For example, a steer-by-wire system must
respond to a sensor failure and “shall
attenuate high-frequency response below 3
db and not lag commanded rate by more than
1.5 m/sec.”

SOC
Calculator

Load
Reduction

System
Conditioning

Battery Voltage
Measurement

Generator
Control Voltage
Regulation

Fan Power
Reduction

4

Figure 4A: Steer-by-wire system

Figure 4B: Steer-by-wire system with fault-
tolerant redundant bus system (FlexRay)

Modeling and simulation of the steer-by-wire
system in Figures 4A and 4B determines if
these requirements conflict or are valid.
Simulation is a core validation activity and
ensures that a system can be realized to
satisfy the requirements.

Rapid Prototyping

Due to inaccurate plant models and
insufficient processing power required to get a
working solution on production silicon,
modeling alone does not provide the total
solution.

To overcome these shortcomings, rapid
prototyping is highly useful because it
replaces the plant model with the physical
plant. In the steer-by-wire example the plant
might be a car, and in that case, an actual car
is used. However, because the system is not
yet built, a real-time or embedded platform

runs the controller software and interacts with
the plant.

There are two forms of rapid prototyping:
functional and on-target. Functional
prototyping uses a powerful real-time
computer such as a multiprocessor floating
point PowerPC or DSP system. The goal is to
determine if the system controls the physical
car as well as it controlled the modeled car. If
so, the plant model inaccuracies are shown to
be insignificant, and the control strategy is
validated.

On-target rapid prototyping executes the
software in the same or similar production
MCU or DSP, rather than a high-end
PowerPC core or other dedicated high-end
rapid prototyping hardware. The goal is to
download the code into the actual production
target for quick testing with the physical plant.
If it performs well, the controller is not only
deemed to be valid, it can feasibly be realized
in production.

2. Detailed Software Design

The software design activity includes fixed-
point data specification, real-time tasking,
data typing, built-in-test, and diagnostics.

With model-based design, the same model
used for algorithm specification and validation
is refined and constrained by the software
engineers as part of the production code
generation process.

ECUECU

ECUECU

ECUECU

ECUECU

FlexRay

5

Figure 5: Possible faults on the steer-by-
wire system

Model Testing

It is more beneficial to test the model on a
desktop rather than deploy it on hardware for
build and integration. Source code-based
testing has existed for many years, but recent
methods now allow for model testing and
structural coverage. The usage scenario is
that a developer fully stresses the controller to
verify its design integrity using simulation and
coverage. Another type of testing is a Failure
Mode Effect Analysis, to ensure the save
operation of the steer-by-wire under fault
condition, as shown in Figure 5.

Examples of poor design integrity are
numerical overflow and dead code. Stress
testing of the model using minimum and
maximum numerical values helps ensure that
overflow conditions will not occur. This type
of testing is easy with simulation, but dead
code is not so easily detected because
detection requires structural coverage. Dead
code differs from deactivated code in that the
latter is known to the developer and is
deactivated for a reason. Actual dead code
means something was missed during
specification.

Model coverage assesses the cumulative
results of a test suite to determine which
blocks were not executed or which states
were not reached. Certain types of coverages
are well established in source code
languages (such as C and C++) but

coverages are now available for the model
[3]. This effort required new theory and tools
not needed (or possible) for C, since these
languages do not posses constructs such as
blocks or states.

Modified Condition / Decision Coverage
(MC/DC) is considered by the FAA to be the
most stringent coverage level necessary to
satisfy safety-critical systems [4]. This
coverage, among others, is now available
within a model-based design framework and
in many cases also required for x-by-wire
designs.

Figure 6: Coverage for power management
design in Figure 3

3. Distributed Architecture Design

Modern embedded systems contain several
distributed ECUs, which communicate in real-
time with each other over a fault-tolerant
communication system like FlexRay. The
latest DSC (Dynamic Stability Control) of
BMW contains ABS as one of 15 sub-
functionalities [5]. By adding blocks of
network components such as hosts, tasks,
and signals from DECOMSYS [6] to the
individual subsystems, the embedded
functions can be connected and mapped onto
an architecture of ECUs. Furthermore, it
facilitates the simulation of the temporal
behavior of task activations of a time-
triggered operating system such as
OSEKtime/OS. Clusters, hosts, tasks, and
connections are designed and simulated
within the MATLAB / Simulink environment.
Finally, the whole design integrates
seamlessly with the DECOMSYS::DESIGNER
product for interaction with the FlexRay
xCDEF design data repository.

ECUECU

ECUECU

ECUECU

ECUECU

A

B

6

The distributed network design solutions from
Vector (DaVinci) and Cadence (SysDesign)
integrate the Real-Time Workshop / Real-
Time Workshop Embedded Coder from
Simulink / Stateflow generated code from
subsystems and map them onto the
architectures for verification.

4. Production Code Generation

Now that the model has been verified and
validated, it is time to generate code. As with
a compiler, this process is straightforward.
Various optimization settings and user
configuration options exist. The key is to
keep the code efficient, accurate and
integrated with legacy code or other tools. It is
also important for the code to be traceable to
the diagram, so that it may be reviewed and
verified.

Code Tracing and Reviews

Figure 7 shows an automatically linked HTML
report. When the developer selects the Sum
Block in the code, it highlights the Sum Block
in the diagram.

Figure 7: Code review

5. Embedded Target Integration

The application in Figure 7 uses Rate
Transition blocks. However, direct links also
exist to commercial RTOSs, including
VxWorks and OSEK variants. As shown in
Figure 8, device driver integration is also
needed.

Figure 8: Device Driver block library for
Motorola MPC555 used in the steer-by-wire
system

Hardware-In-the-Loop Testing

Once the controller has been built, a series of
open- and closed-loop tests can be performed
with the real-time plant model in the loop. One
example involves only the processor, and is
known as “processor-in-the-loop” testing. The
second example uses the actual built ECU
hardware, termed “hardware-in-the-loop.” In
either case, the physical controller is tested
with the plant model. Through a series of
tests, perhaps the same test used during
requirements validation, the controller must
be shown as acceptable to the customer.

Figure 9: HIL test at DLR Germany with
force feedback

7

Integral Components

Most software standards require traceability of
requirements, perhaps originating in other
requirements tools, throughout development.
Also, software configuration management
(SCM) is needed to store, version, and
retrieve the various development artifacts.
Documentation via report generators ensures
management, customers and suppliers will
see the model. The SCM interface is shown
below in figure 10.

Figure 10: Source control interface

Conclusion

Major software evolutions occur when the full
software engineering process activities are
supported. Improving bits and pieces alone is
insufficient. This paper described a full
software engineering framework for model-
based design and production code
generation. Specific methods and tools were
shown to illustrate that this is not just theory,
but rather it is both practical and available.

Each topic presented easily contains enough
content for a separate paper or book.
Readers who wish to learn more or care to
exchange ideas regarding additional methods
and use cases are encouraged to contact the
authors.

References
[1] www.mathworks.com
[2] www.ieee.org
[3] B. Aldrich, “Using model coverage analysis
to improve the controls development
process,” AIAA 2002
[4] "Software considerations in airborne
systems and equipment certification,"
RTCA/DO-178B, RTCA Inc., Dec. 1992
[5] Dr. Michael von der Beeck, ARTIST
Industrial Seminar, Paris, 23.4.2002
http://www.artist-
embedded.org/PastEvents/Kickoffs/BMW.pdf
[6] www.decomsys.com
[7] Paul Yih, Jihan Ryu, J. Christian Gerdes,
Modification of Vehicle Handling
Characteristics via Steer-by-Wire, Dept. of
Mechanical Engineering, Stanford University

Authors
[1] Joachim Langenwalter
European Automotive Marketing Manager
jlangenwalter@mathworks.com

[2] Tom Erkkinen
Embedded Applications Manager
terkkinen@mathworks.com

-- # # # --

