

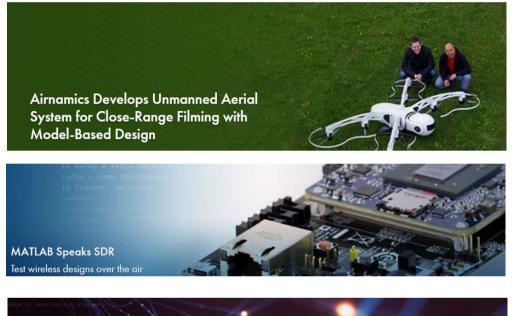
Cross-Linking Research and Education and Entrepreneurship

MATLAB ACADEMIC CONFERENCE 2016

Ken Dunstan Education Manager, Asia Pacific MathWorks @techcomputing

1

Innovation


A pressing challenge

Exceptional research but commercialization struggles

- Insufficient STEM education
- inadequate collaboration
- 75% businesses without innovation culture

Disruptive technologies present opportunities

Education, research & business communities must align

Technology & Innovation – setting a direction

- Big Data
- Machine Learning
- Modelling & Simulation
- Robotics
- Biotechnology
- Sensors
- Nanotechnologies
- Energy technologies
- IOT

These two new general purpose technologies offer enormous social and economic opportunities for countries which facilitate and embrace their widespread development and adoption.

Technology & Innovation – setting a direction

Lead author, Bob Williamson says:

"Data analytics stands to be the next general purpose technology, and is surely a harbinger of the next technological revolution,"

"To me the really interesting thing is rather than say you have this privileged class of technology scientists and then you have all these other poor bunnies. But everyone is a technologist of sorts.

"When you consider every student at school now-what is it they need to learn to given that we are moving into an era when **data technology will be pervasive**.

"They don't need to necessarily build it but in the same way I don't need to know how to build a computer but I **do need to understand how to exploit it** and you are starting to see a lot of this."

Demand & opportunity

Employer's say..

Our senior engineers with experience and integrated knowhow are **retiring and taking with them our core competencies**.

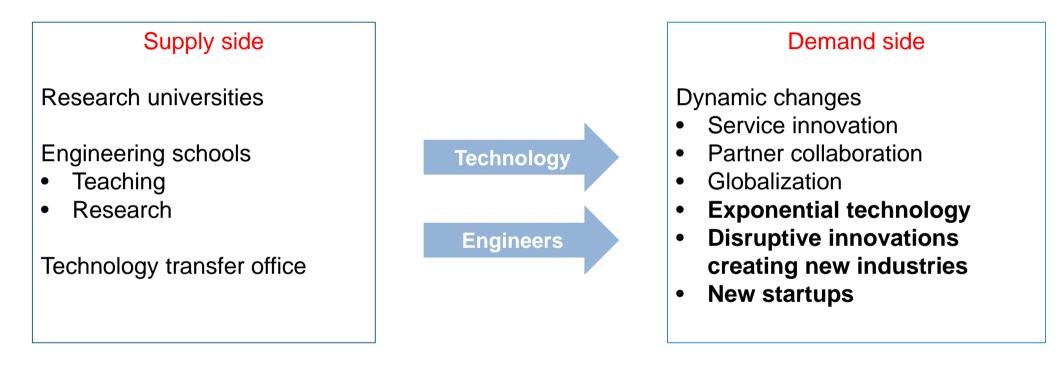
The new engineers have no multidisciplinary, integrating, systems experience. Academia does not teach that! We are losing our competitive advantage!

How can we capture that engineering expertise and enhance our engineering workforce to keep our competitive advantage?

Gaps Between What Academia Teaches and What Industry Needs

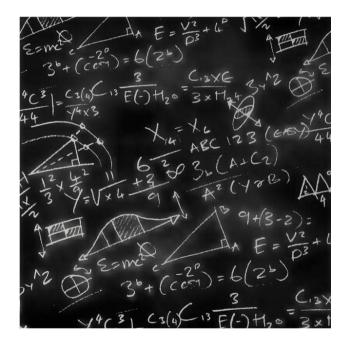
	Industry: Essential, Important, or Useful
Linear Models	96.4%
Control-Oriented Models for System Design	98.2%
Simulation Models for System Verification or Product Development	94.5%
Nonlinear Models	90.9%
Finite State Machine Models	82.9%
Real-Time Models for Hardware-in-the-Loop Verification or Training	94.4%

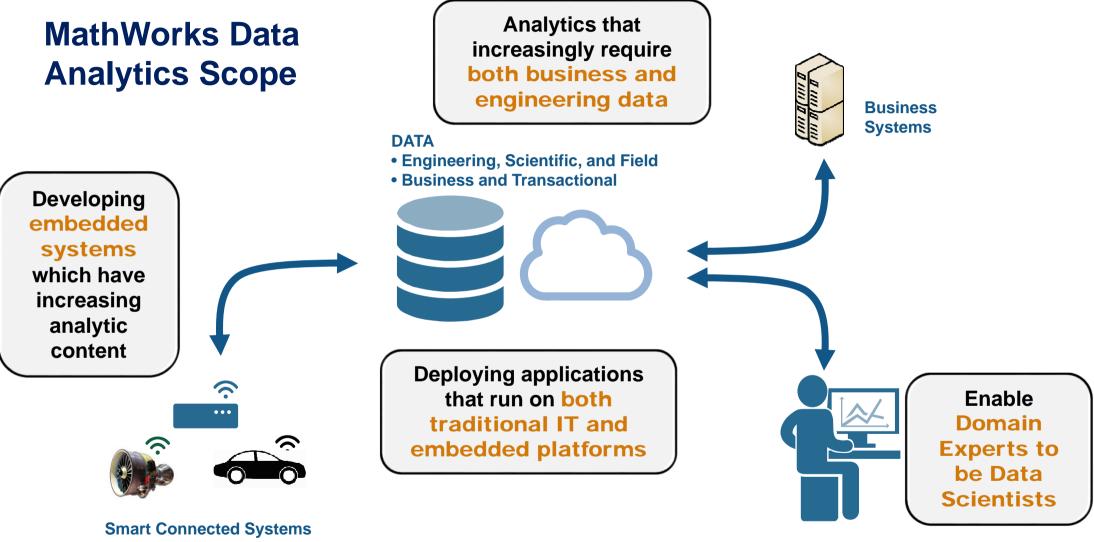
Nov. 2009 Controls Curriculum Survey: An IEEE Control Systems Society Outreach Task Force Report www.ieeecss.org/publications/miscellaneous.html



Education is the key for new Industries

- New industries bring more variations & <u>Complexity</u> in development and production.
- Requires more capable employees in both the works and the development
 - The <u>worker</u> needs to understand how to influence production plant that is reconfiguring itself.
 - The <u>developer</u> must plan for flexibility in the production systems
- Modelling and simulation is an indispensable tool.
- Responsibility for quality and implementation lies with <u>companies</u> and <u>universities</u>


Innovating the Engineering Education Model – Supply & Demand


It's Math that Drives Things

More math in your system \rightarrow bigger benefit from MATLAB & Simulink

Data Analytics

MATLAB Enabled Campus "Everyone, Anytime, Anywhere" Access

Unified Computational Ecosystem

MATLAB ON PCs Clusters Cloud

MATLAB Mobile

MATLAB Online

Curricula Materials and Projects

Resource Framework

Hands-on learning with hardware & sensors

Diffe	ental Equation	is using MATLAB
Aug 10	-	E Aurigements
Line	ten ti arine larite	any Officential Equation in HeT, 64
Los .	r Algebrei von	g MATLAB
-	distants.	2 Anigements
		ner algebra using MATUAL Analigeurs, meraminist insultion, anting a matrix decomposition per some of the topics usered.
Oye	nighter and C	Lone Filling
1. m	-	2 Anigurate
1 hours	tee 'n prêze op	Arrighter realities and R Annuality using NUTAR
Nor	and impos	on using MATLAB
and the property of the	CO.M.	
and 1 during the last of	Anig	
		Problems
		 Seamon () Multiply a startistic by Sea

Online auto grading of assignments

Online self-paced learning

Over 5000 universities use MATLAB 650 provide MATLAB-enabled campuses

Australia & New Zealand: 28 out of 48 universities are MATLAB Enabled Campuses

Michigan State Integrates MATLAB into Engineering Curricula to Foster Student Proficiency in Problem-Solving Using Computational Tools

Challenge

Help engineering students build confidence in their ability to apply computational tools and better prepare them for industry and postgraduate study

Solution

Integrate MATLAB and Simulink throughout the engineering curricula, enabling students to consistently build upon their previous experiences

Results

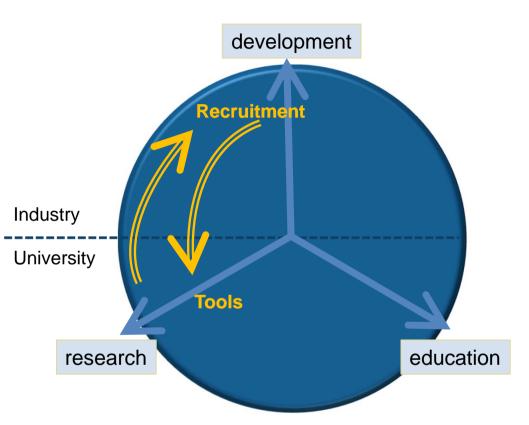
- Students better prepared to meet industry demands
- Program outcomes and student skills improved
- Teaching accelerated in higher-level courses

Dr. Daina Briedis with a student in the lab.

"Our environment of choice for problem-solving at the undergraduate level is MATLAB. We selected MATLAB because it is suitable for a broad range of problems and because it is becoming the de facto standard in many university engineering programs, reflecting the increasing use of MATLAB in industry."

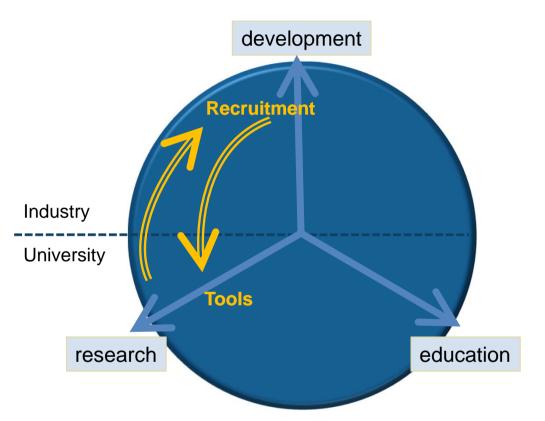
> Dr. Jon Sticklen Michigan State University

Link to user story

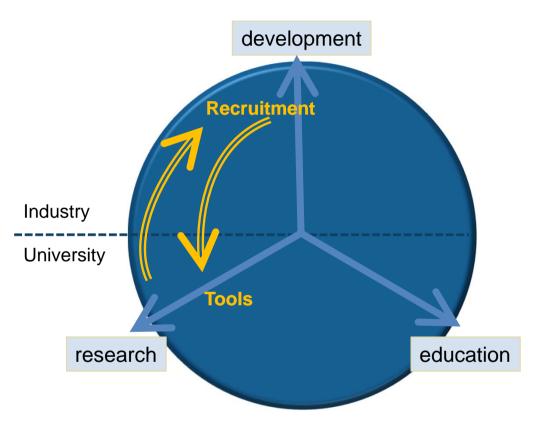

Industry University research education

Supporting Research Programmes

A Challenge for All of Us

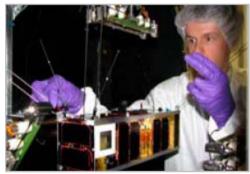

 Universities need to revise curricula to attract and retain students, reflect research interests of faculty, and give students practical knowledge and skills

A Challenge for All of Us


- Companies need innovative techniques to solve their own real-world problems
- Universities have researchers in search of real-world problems to drive and anchor their research work

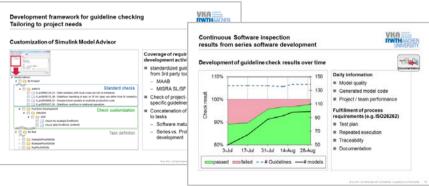
A Challenge for All of Us

- Companies need innovative techniques to solve their own real-world problems
- Universities have researchers in search of real-world problems to drive and anchor their research work



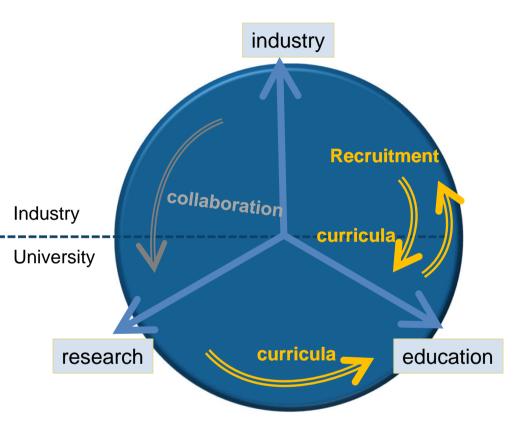
Industry-University Research Collaborations

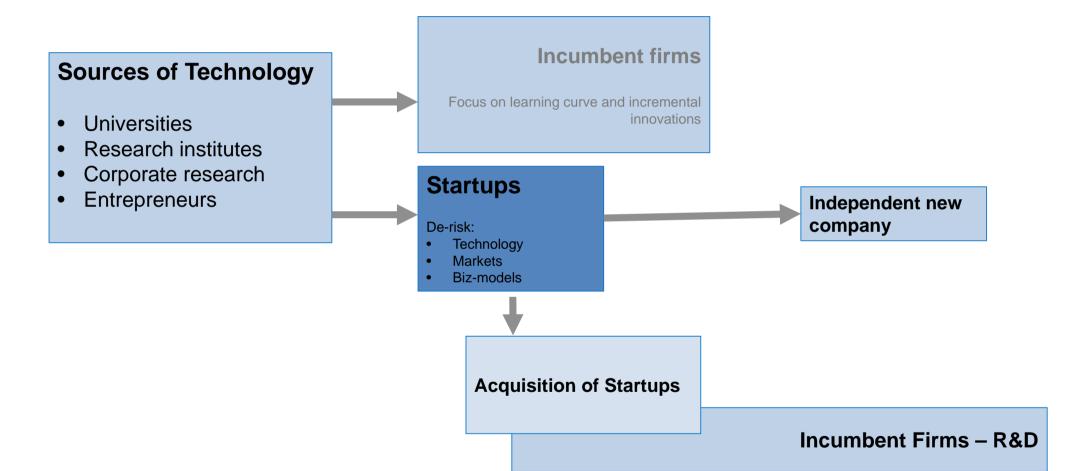
Ricardo and Fraunhofer Institute Model-Based Design of a Piezoelectric-Actuated Hydraulic Pump



University of Toronto and Space Flight Laboratory Design of Nanosatellite Control Systems

FEV and RWTH Aachen


New Model-Based Design Techniques for Automotive Software Development


A Challenge for All

- Universities need to revise curricula to attract and retain students, reflect research interests of faculty, and give students practical knowledge and skills
- Companies push the state-of-the-art in development methods, and need engineers who can contribute

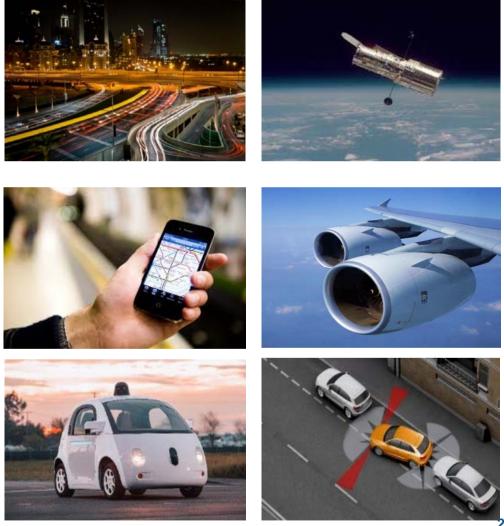
Innovation Transition

MathWorks Startup & Accelerator Program

MathWorks supports more than 100 startup accelerators and incubators worldwide.

Startups rely on MATLAB and Simulink to

- reduce technical risk
- do more with limited resources.
- focus on competitive differentiation and reach early-stage milestones.


Australia & New Zealand 6 Accelerators & >15 Startups supported

Bridging Innovation from Academia to Industry

How will your teaching, research or learning enable you to collaborate in innovative teams and companies?

Are you providing yourself with the competency and tools to deliver innovative products and systems?

Accelerating the pace of discovery, innovation, development, and <u>learning</u> in engineering and science.

